日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網如圖,在⊙O中,AB是直徑,AD是弦,∠ADE=60°,∠C=30度.
          (1)判斷直線CD是否是⊙O的切線,并說明理由;
          (2)若CD=3
          3
          ,求BC的長.
          分析:(1)根據(jù)切線的判定定理,連接OD,只需證明OD⊥CD,根據(jù)三角形的外角的性質得∠A=30°,再根據(jù)等邊對等角得∠ADO=∠A,從而證明結論;
          (2)在30°的直角三角形OCD中,求得OD,OC的長,則BC=OC-OB.
          解答:精英家教網解:(1)CD是⊙O的切線
          證明:連接OD
          ∵∠ADE=60°,∠C=30°
          ∴∠A=30°
          ∵OA=OD
          ∴∠ODA=∠A=30°
          ∴∠ODE=∠ODA+∠ADE=30°+60°=90°
          ∴OD⊥CD
          ∴CD是⊙O的切線;

          (2)在Rt△ODC中,∠ODC=90°,∠C=30°,CD=3
          3

          ∵tanC=
          OD
          CD

          ∴OD=CD•tanC=3
          3
          ×
          3
          3
          =3
          ∴OC=2OD=6
          ∵OB=OD=3
          ∴BC=OC-OB=6-3=3.
          點評:此題主要考查圓的切線的性質定理的證明、切線的判定及解直角三角形的綜合運用.屬于基礎題.
          練習冊系列答案
          相關習題

          科目:高中數(shù)學 來源: 題型:

          精英家教網如圖,在⊙O中,AB為直徑,AD為弦,過B點的切線與AD的延長線交于點C,且AD=DC,則sin∠ACO=
           

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          15、如圖,在⊙O中,AB是弦,AC是⊙O切線,過B點作BD⊥AC于D,BD交⊙O于E點,若AE平分∠BAD,則∠ABD的度數(shù)是
          30°

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          (2011•惠州模擬)如圖,在⊙O中,AB為直徑,AD為弦,過B點的切線與AD的延長線交于點C,且AD=DC,則sin∠BCO=
          5
          5
          5
          5

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          如圖,在⊙O中,AB是弦,AC是⊙O的切線,A是切點,過 B作BD⊥AC于D,BD交⊙O于E點,若AE平分
          ∠BAD,則∠BAD=( 。

          查看答案和解析>>

          同步練習冊答案