【題目】在平面直角坐標(biāo)系中,橢圓E:
(
)的長(zhǎng)軸長(zhǎng)為4,左準(zhǔn)線l的方程為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)直線過(guò)橢圓E的左焦點(diǎn)
,且與橢圓E交于A,B兩點(diǎn).
①若,求直線
的方程;
②過(guò)A作左準(zhǔn)線l的垂線,垂足為,點(diǎn)
,求證:
,B,G三點(diǎn)共線.
【答案】(1)(2)①
或
,②證明見(jiàn)解析
【解析】
(1)根據(jù)長(zhǎng)軸的值和準(zhǔn)線的方程,可求得,
的值,結(jié)合
,從而可求出橢圓的標(biāo)準(zhǔn)方程;
(2)①設(shè),
,作
,根據(jù)橢圓的第二定義可得
,結(jié)合
,可推出
,從而推出
,根據(jù)
,可得
,分別對(duì)直線
的斜率存在與不存在進(jìn)行討論,結(jié)合韋達(dá)定理即可求得直線
的方程;
②當(dāng)直線的斜率不存在時(shí),分別求出
,
,即可得證;當(dāng)直線
的斜率存在時(shí),分別求出
,
,結(jié)合韋達(dá)定理即可求證.
(1)由題,,
,∴
,
∴,橢圓方程
.
(2)①設(shè),
作,由第二定義,
,而
∴,同理
∴,即
,②證明見(jiàn)解析
設(shè)的斜率為k
1°若k不存在,即(舍)
2°若k存在,:
聯(lián)立
消去y,(*),
恒成立
∴,即
,∴
:
或
②證明1°若的斜率不存在,
,
,
,
,
,
∴,B,G三點(diǎn)共線.
2°若的斜率存在,
,
,
要證,B,G共線.即證
,即
,即
即,即
由(*),
代入上式:,即
顯然成立。
∴,B,G三點(diǎn)共線.
綜上所述,,B,G三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
.
(1)若,判斷函數(shù)
的單調(diào)性并說(shuō)明理由;
(2)若,求證:關(guān)
的不等式
在
上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)為常數(shù),函數(shù)
,給出以下結(jié)論:
(1)若,則
存在唯一零點(diǎn)
(2)若,則
(3)若有兩個(gè)極值點(diǎn)
,則
其中正確結(jié)論的個(gè)數(shù)是( )
A. 3B. 2C. 1D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】“猜想”是指對(duì)于每一個(gè)正整數(shù)
,若
為偶數(shù),則讓它變成
;若
為奇數(shù),則讓它變成
.如此循環(huán),最終都會(huì)變成
,若數(shù)字
按照以上的規(guī)則進(jìn)行變換,則變換次數(shù)為偶數(shù)的頻率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,是由矩形,
和
組成的一個(gè)平面圖形,其中
,
,將其沿
折起使得
重合,連接
如圖②.
(1)證明:平面平面
;
(2)若為線段
中點(diǎn),求直線
與平面
所成角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前
項(xiàng)和為
,
,
(
且
),數(shù)列
滿足:
,且
(
且
).
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)求證:數(shù)列為等比數(shù)列;
(Ⅲ)求數(shù)列的前
項(xiàng)和的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com