日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 如圖,在四棱錐中,四邊形是菱形,,E為PB的中點(diǎn).

          (Ⅰ)求證:平面;
          (Ⅱ)求證:平面平面.   

          見詳解

          解析試題分析:
          (Ⅰ)要證線面平行,需要找線線平行,根據(jù)線面平行的判定定理得證;(Ⅱ)要證面面垂直,需要線面垂直,根據(jù)面面垂直的判定定理得證;
          試題解析:
          證明:(Ⅰ)如圖,設(shè),連接EO,因?yàn)镺,E分別

          是BD,PB的中點(diǎn),所以,          (4分)
          ,所以平面.
          (6分)
          (Ⅱ)連接PO,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/ea/5/lrej04.png" style="vertical-align:middle;" />,所以,又四邊形是菱形,
          所以.                          (9分)
          平面,平面,,
          所以平面,                        (11分)
          平面,所以平面平面.           (12分)
          考點(diǎn):線面平行,面面垂直

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在直三棱柱中,D、E分別為、AD的中點(diǎn),F(xiàn)為上的點(diǎn),且

          (I)證明:EF∥平面ABC;
          (Ⅱ)若,,求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          將棱長為的正方體截去一半(如圖甲所示)得到如圖乙所示的幾何體,點(diǎn)分別是的中點(diǎn).

          (Ⅰ)證明:;
          (Ⅱ)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,在四棱錐P—ABCD中,PA⊥平面ABCD,四邊形ABCD為正方形,PA=AB=4,G為PD的中點(diǎn),E是AB的中點(diǎn).

          (Ⅰ)求證:AG∥平面PEC;  
          (Ⅱ)求點(diǎn)G到平面PEC的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          四棱錐中,⊥底面,,,.

          (Ⅰ)求證:⊥平面;
          (Ⅱ)若側(cè)棱上的點(diǎn)滿足,求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,三棱錐中,,
           
          (Ⅰ)求證:;
          (Ⅱ)若,的中點(diǎn),求與平面所成角的正切值  

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,四棱錐P-ABCD的底面ABCD是正方形,PD⊥平面ABCD,E為PB上的點(diǎn),且2BE=EP.

          (1)證明:AC⊥DE;
          (2)若PC=BC,求二面角E-AC一P的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,長方體中,,點(diǎn)的中點(diǎn).

          (1)求三棱錐的體積;
          (2)證明:;
          (3)求二面角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖所示,已知為圓的直徑,點(diǎn)為線段上一點(diǎn),且,點(diǎn)為圓上一點(diǎn),且.點(diǎn)在圓所在平面上的正投影為點(diǎn)

          (1)求證:;
          (2)求二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案