日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù).
          (1)若函數(shù)處取得極值,且函數(shù)只有一個零點(diǎn),求的取值范圍.
          (2)若函數(shù)在區(qū)間上不是單調(diào)函數(shù),求的取值范圍.

           (1);(2).

          解析試題分析:(1)函數(shù)處取得極值,知,再由函數(shù)只有一個零點(diǎn)和函數(shù)的圖象特點(diǎn)判斷函數(shù)的極大值和極小值和0的大小關(guān)系即可解決,這是解決三次多項(xiàng)式函數(shù)零點(diǎn)個數(shù)的一般方法,體現(xiàn)了數(shù)形結(jié)合的數(shù)形思想;(2)三次函數(shù)的導(dǎo)函數(shù)是二次函數(shù),要使三次函數(shù)在不是單調(diào)函數(shù),則要滿足導(dǎo)數(shù)的,要使函數(shù)在區(qū)間上不是單調(diào)函數(shù),還要滿足三次函數(shù)的導(dǎo)函數(shù)在上至少有一個零點(diǎn).
          試題解析:(1),由,
          所以
          可知:當(dāng)時,單調(diào)遞增;當(dāng)時,,單調(diào)遞減;
          當(dāng)時,單調(diào)遞增;而.
          所以函數(shù)只有一個零點(diǎn),解得的取值范圍是.
          .由條件知方程上有兩個不等的實(shí)根,且在至少有一個根.由 ;
          使得:.
          綜上可知:的取值范圍是.
          考點(diǎn):三次函數(shù)的零點(diǎn)、三次函數(shù)的單調(diào)性.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中,為參數(shù),且
          (1)當(dāng)時,判斷函數(shù)是否有極值;
          (2)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
          (3)若對(2)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)當(dāng)時,試確定函數(shù)在其定義域內(nèi)的單調(diào)性;
          (2)求函數(shù)上的最小值;
          (3)試證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求函數(shù)上的最小值;
          (2)若函數(shù)有兩個不同的極值點(diǎn)、,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù)
          解不等式;(4分)
          事實(shí)上:對于成立,當(dāng)且僅當(dāng)時取等號.由此結(jié)論證明:.(6分)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),其中為常數(shù),為自然對數(shù)的底數(shù).
          (1)求的單調(diào)區(qū)間;
          (2)若,且在區(qū)間上的最大值為,求的值;
          (3)當(dāng)時,試證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)若函數(shù)滿足:
          ①對任意的,,當(dāng)時,有成立;
          ②對恒成立.求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)函數(shù).
          (Ⅰ)證明:時,函數(shù)上單調(diào)遞增;
          (Ⅱ)證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          設(shè)
          (Ⅰ)討論函數(shù)的單調(diào)性;
          (Ⅱ)若,證明:時,成立

          查看答案和解析>>

          同步練習(xí)冊答案