日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖, 平面, 平面 是等邊三角形, ,

          的中點(diǎn).

          (1)求證: ;

          (2)若直線與平面所成角的正切值為,求二面角的余弦值.

          【答案】(1)見(jiàn)解析;(2).

          【解析】試題分析:證明 ,推出平面,然后證明

          ;

          以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過(guò)且與直線平行的直線為軸,建立空間直角坐標(biāo)系,說(shuō)明為直線與平面所成角,設(shè),求出相關(guān)點(diǎn)的坐標(biāo),求出平面與平面的法向量,利用空間向量的數(shù)量積求解即可;

          解析:(1)因?yàn)?/span>是等邊三角形, 的中點(diǎn),所.

          因?yàn)?/span>平面, 平面,所以.

          因?yàn)?/span>,所以平面.

          因?yàn)?/span>平面,所以.

          (2)法1:以點(diǎn)為坐標(biāo)原點(diǎn), 所在直線為軸, 所在直線為軸,過(guò)且與直線平行的直線為軸,建立空間直角坐標(biāo)系.

          因?yàn)?/span>平面,所以為直線與平面所成角.

          ,即,從而.

          不妨設(shè),又,則, .故, ,

          , .于是,

          , ,設(shè)平面與平面的法向量分別為

          , ,由,得,

          所以.由

          , .所以.

          所以.

          所以二面角的余弦值為.

          法2:因?yàn)?/span>平面,所以為直線與平面所成角.

          由題意得,即,從而.

          不妨設(shè),又, , .

          由于平面, 平面,則.

          的中點(diǎn),連接,則.

          中, ,

          中, ,

          中, ,

          的中點(diǎn),連接 , ,

          . 所以為二面角的平面角.

          中, ,在中, ,

          中, ,因?yàn)?/span>,

          所以.所以二面角的余弦值

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)在點(diǎn)處的切線方程為.

          (Ⅰ)求實(shí)數(shù),的值;

          (Ⅱ)求的單調(diào)區(qū)間;

          (Ⅲ)成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)隨機(jī)選取了名男生,將他們的身高作為樣本進(jìn)行統(tǒng)計(jì),得到如圖所示的頻率分布直方圖,觀察圖中數(shù)據(jù),完成下列問(wèn)題.

          )求的值及樣本中男生身高在(單位:)的人數(shù).

          )假設(shè)用一組中的每個(gè)數(shù)據(jù)可用該組區(qū)間的中點(diǎn)值代替,通過(guò)樣本估計(jì)該校全體男生的平均身高.

          )在樣本中,從身高在(單位:)內(nèi)的男生中任選兩人,求這兩人的身高都不低于的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知,直線AM,BM相交于點(diǎn)M,且直線AM的斜率與直線BM的斜率的差是,則點(diǎn)M的軌跡C的方程是___________.若點(diǎn)為軌跡C的焦點(diǎn),是直線上的一點(diǎn),是直線與軌跡的一個(gè)交點(diǎn),且,則_____

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱柱中,平面平面,.

          (1)證明:;

          (2)若是正三角形,,求二面角的大小.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          (1)討論函數(shù)在區(qū)間上的單調(diào)性;

          (2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點(diǎn),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某中學(xué)為研究學(xué)生的身體素質(zhì)與課外體育鍛煉時(shí)間的關(guān)系,對(duì)該校200名高三學(xué)生平均每天課外體育鍛煉時(shí)間進(jìn)行調(diào)查,如表:(平均每天鍛煉的時(shí)間單位:分鐘)

          平均每天鍛煉的時(shí)間/分鐘

          總?cè)藬?shù)

          20

          36

          44

          50

          40

          10

          將學(xué)生日均課外體育鍛煉時(shí)間在的學(xué)生評(píng)價(jià)為“課外體育達(dá)標(biāo)”.

          (1)請(qǐng)根據(jù)上述表格中的統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的列聯(lián)表;

          課外體育不達(dá)標(biāo)

          課外體育達(dá)標(biāo)

          合計(jì)

          20

          110

          合計(jì)

          (2)通過(guò)計(jì)算判斷是否能在犯錯(cuò)誤的概率不超過(guò)的前提下認(rèn)為“課外體育達(dá)標(biāo)”性別有關(guān)?

          參考公式,其中

          0.25

          0.15

          0.10

          0.05

          0.025

          0.010

          0.005

          0.001

          1.323

          2.072

          2.706

          3.841

          5.024

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】,,若以為左右焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn).

          (1)求的標(biāo)準(zhǔn)方程

          (2)設(shè)過(guò)右焦點(diǎn)且斜率為的動(dòng)直線與相交于兩點(diǎn),探究在軸上是否存在定點(diǎn),使得為定值?若存在,試求出定值和點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù) (是常數(shù)),

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)當(dāng)時(shí),函數(shù)有零點(diǎn),求的取值范圍.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案