已知數(shù)列的前
項(xiàng)和
,又
,求數(shù)列
的前
項(xiàng)和
.
.
解析試題分析:本試題主要考查了運(yùn)用數(shù)列的前項(xiàng)和與通項(xiàng)公式的關(guān)系式:
,求解數(shù)列
的通項(xiàng)公式,并結(jié)合通項(xiàng)公式的特點(diǎn)進(jìn)一步分類(lèi)討論求解數(shù)列
的前
項(xiàng)和
.
試題解析:時(shí),
時(shí),
也適合上式
時(shí),
,
時(shí),
.
考點(diǎn):1.等差數(shù)列的通項(xiàng)公式及其前項(xiàng)和;2.分類(lèi)討論的思想.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
下列命題正確的是 ( )
①若數(shù)列是等差數(shù)列,且
,
則;
②若是等差數(shù)列
的前
項(xiàng)的和,則
成等差數(shù)列;
③若是等比數(shù)列
的前
項(xiàng)的和,則
成等比數(shù)列;
④若是等比數(shù)列
的前
項(xiàng)的和,且
;(其中
是非零常數(shù),
),則
為零.
A.①② | B.②③ | C.②④ | D.③④ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知公差不為零的等差數(shù)列,等比數(shù)列
,滿(mǎn)足
,
,
.
(1)求數(shù)列、
的通項(xiàng)公式;
(2)若,求數(shù)列{
}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
等差數(shù)列的各項(xiàng)均為正數(shù),
,前項(xiàng)和為
,
為等比數(shù)列,
,且
. (1)求
與
;
(2)求和:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若的圖像與直線(xiàn)
相切,并且切點(diǎn)橫坐標(biāo)依次成公差為
的等差數(shù)列.
(1)求和
的值;
(2)ABC中a、b、c分別是∠A、∠B、∠C的對(duì)邊.若
是函數(shù)
圖象的一個(gè)對(duì)稱(chēng)中心,且a=4,求
ABC面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列是公差不為0的等差數(shù)列,
,且
,
,
成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為a1,且,an,Sn成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)數(shù)列{bn}滿(mǎn)足,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知數(shù)列{an}滿(mǎn)足a1+a2+…+an=n2(n∈N*).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)對(duì)任意給定的k∈N*,是否存在p,r∈N*(k<p<r)使,
,
成等差數(shù)列?若存在,用k分別表示p和r(只要寫(xiě)出一組);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
己知各項(xiàng)均不相等的等差數(shù)列{an}的前四項(xiàng)和S4=14,且a1,a3,a7成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列的前n項(xiàng)和,若Tn≤
¨對(duì)
恒成立,求實(shí)數(shù)
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com