日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的離心率為,過(guò)右焦點(diǎn)作垂直于橢圓長(zhǎng)軸的直線交橢圓于兩點(diǎn),且為坐標(biāo)原點(diǎn).

          (1)求橢圓的方程;

          (2) 設(shè)直線與橢圓相交于兩點(diǎn),若.

          ①求的值;

          ②求的面積的最小值.

          【答案】(1);(2),②.

          【解析】

          (1)利用橢圓的離心率公式,通徑的長(zhǎng)和橢圓中a,b,c的關(guān)系,求得a,b,c的值,進(jìn)而可得橢圓的方程.

          (2)①通過(guò)聯(lián)立直線和橢圓方程,得到關(guān)于x的一元二次方程,利用一元二次方程的根與系數(shù)的關(guān)系,求出,再結(jié)合向量表示垂直得,進(jìn)而求解

          ②設(shè)直線OA的斜率為.分兩種情況討論,當(dāng)時(shí),通過(guò)聯(lián)立直線與橢圓方程和三角形面積公式,將面積的最小值問(wèn)題轉(zhuǎn)化為求函數(shù)的最值問(wèn)題求解,再結(jié)合時(shí)的情況,得面積的取值范圍,進(jìn)而求得最小值.

          (1) 已知橢圓的離心率為,可知 ,

          根據(jù)橢圓的通徑長(zhǎng)為 ,結(jié)合橢圓中

          可解得 ,

          故橢圓C的方程為 .

          (2)①已知直線AB的方程為 , 設(shè)

          與橢圓方程聯(lián)立有,消去y,得 ,

          所以

          ,所以 ,即 ,

          所以 .整理得 ,

          所以

          設(shè)直線OA的斜率為.當(dāng)時(shí),則的方程O(píng)A為,OB的方程為 ,聯(lián)立,同理可求得 ,

          故△AOB的面積為 .

          ,則

          ,所以 .

          所以 ,當(dāng)時(shí),可求得S=1,故,故S的最小值為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如果函數(shù)f(x)= 滿(mǎn)足:對(duì)于任意的x1 , x2∈[0,2],都有|f(x1)﹣f(x2)|≤a2恒成立,則a的取值范圍是(
          A.[﹣ ]
          B.[﹣ ]
          C.(﹣ ]
          D.(﹣ ]∪[

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知四棱錐P﹣ABCD的底面ABCD是等腰梯形,AB∥CD,且AC⊥BD,AC與BD交于O,PO⊥底面ABCD,PO=2,AB=2CD=2 ,E,F(xiàn)分別是AB,AP的中點(diǎn).

          (1)求證:AC⊥EF;
          (2)求二面角F﹣OE﹣A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】銳角△ABC中,其內(nèi)角A,B滿(mǎn)足:2cosA=sinB﹣ cosB.
          (1)求角C的大小;
          (2)D為AB的中點(diǎn),CD=1,求△ABC面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知兩點(diǎn),點(diǎn)P是橢圓上任意一點(diǎn),則點(diǎn)P到直線AB的距離最大值為( )

          A. B. C. 6D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖四棱錐中,底面ABCD是平行四邊形,平面ABCD,垂足為GGAD上,且,,,EBC的中點(diǎn).

          求異面直線GEPC所成的角的余弦值;

          求點(diǎn)D到平面PBG的距離;

          F點(diǎn)是棱PC上一點(diǎn),且,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正四棱錐V﹣ABCD中(底面是正方形,側(cè)棱均相等),AB=2,VA= ,且該四棱錐可繞著AB任意旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中CD∥平面α,則正四棱錐V﹣ABCD在平面α內(nèi)的正投影的面積的取值范圍是(
          A.[2,4]
          B.(2,4]
          C.[ ,4]
          D.[2,2 ]

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1的極坐標(biāo)方程是ρ=2,矩形ABCD內(nèi)接于曲線C1 , A,B兩點(diǎn)的極坐標(biāo)分別為(2, )和(2, ),將曲線C1上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮短為原來(lái)的一半,得到曲線C2
          (1)寫(xiě)出C,D的直角坐標(biāo)及曲線C2的參數(shù)方程;
          (2)設(shè)M為C2上任意一點(diǎn),求|MA|2+|MB|2+|MC|2+|MD|2的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),,若方程有四個(gè)不同的解,則的取值范圍為( )

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案