日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

          (1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

          (2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

          【答案】(1);(2).

          【解析】

          試題分析:對(duì)于問(wèn)題(1)首先求出從個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成的三角形的個(gè)數(shù),再求出以為直徑的三角形的個(gè)數(shù),即可求出所求的概率;對(duì)于問(wèn)題(2)首先求出當(dāng)三角形的面積等于時(shí)點(diǎn)在半圓內(nèi)的位置,然后再根據(jù)幾何概型即可求得所需的結(jié)論.

          試題解析:(1)從個(gè)點(diǎn)中任取個(gè)點(diǎn),一共可以組成個(gè)三角形:,其中是直角三角形的只有個(gè),所以組成直角三角形的概率為

          (2)連接,取線(xiàn)段的中點(diǎn),則,

          易求得,當(dāng)點(diǎn)在線(xiàn)段上時(shí),

          所以只有當(dāng)點(diǎn)落在陰影部分時(shí),面積才能大于,而,所以由幾何概型的概率公式得的面積大于的概率為

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某公司研發(fā)了兩種具有自主知識(shí)產(chǎn)權(quán)的操作系統(tǒng),分別命名為天下、東方”.這兩套操作系統(tǒng)均適用于手機(jī)、電腦、車(chē)聯(lián)網(wǎng)、物聯(lián)網(wǎng)等,且較國(guó)際同類(lèi)操作系統(tǒng)更加流暢.

          1)為了解喜歡天下系統(tǒng)是否與性別有關(guān),隨機(jī)調(diào)查了名男用戶(hù)和名女用戶(hù),每位用戶(hù)對(duì)天下系統(tǒng)給出喜歡或不喜歡的評(píng)價(jià),得到下面列聯(lián)表:

          請(qǐng)問(wèn):能否有的把握認(rèn)為男、女用戶(hù)對(duì)天下系統(tǒng)的喜歡有差異?

          附:.

          2)該公司選定萬(wàn)名用戶(hù)對(duì)天下東方操作系統(tǒng)(以下簡(jiǎn)稱(chēng)天下東方)進(jìn)行測(cè)試,每個(gè)用戶(hù)只能從天下東方中選擇一個(gè)使用,每經(jīng)過(guò)一個(gè)月后就給用戶(hù)一次重新選擇天下東方的機(jī)會(huì).這個(gè)月選擇天下的用戶(hù)在下個(gè)月選擇天下的概率均為,選擇東方的概率均為;這個(gè)月選擇東方的用戶(hù)在下個(gè)月選擇天下的概率均為,選擇東方的概率均為,.表示第個(gè)月用戶(hù)選擇天下的概率,已知,,,.

          (。┣的值;

          (ⅱ)證明:數(shù)列)為等比數(shù)列;

          (ⅲ)預(yù)測(cè)選擇天下操作系統(tǒng)的用戶(hù)數(shù)量不超過(guò)多少萬(wàn)人.(精確到1萬(wàn))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知某商品每件的生產(chǎn)成本(元)與銷(xiāo)售價(jià)格(元)具有線(xiàn)性相關(guān)關(guān)系,對(duì)應(yīng)數(shù)據(jù)如表所示:

          (元)

          5

          6

          7

          8

          (元)

          15

          17

          21

          27

          (1)求出關(guān)于的線(xiàn)性回歸方程

          (2)若該商品的月銷(xiāo)售量(千件)與生產(chǎn)成本(元)的關(guān)系為,,根據(jù)(1)中求出的線(xiàn)性回歸方程,預(yù)測(cè)當(dāng)為何值時(shí),該商品的月銷(xiāo)售額最大.

          附:,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù),是自然對(duì)數(shù)的底數(shù)).

          (1)若函數(shù)在點(diǎn)處的切線(xiàn)方程為,試確定函數(shù)的單調(diào)區(qū)間;

          (2)①當(dāng),時(shí),若對(duì)于任意,都有恒成立,求實(shí)數(shù)的最小值;②當(dāng)時(shí),設(shè)函數(shù),是否存在實(shí)數(shù),使得?若存在,求出的取值范圍;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知分別是雙曲線(xiàn)E 的左、右焦點(diǎn),P是雙曲線(xiàn)上一點(diǎn), 到左頂點(diǎn)的距離等于它到漸近線(xiàn)距離的2倍,(1)求雙曲線(xiàn)的漸近線(xiàn)方程;(2)當(dāng)時(shí), 的面積為,求此雙曲線(xiàn)的方程。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù),其中,是自然對(duì)數(shù)的底數(shù).

          (1)若上存在兩個(gè)極值點(diǎn),求的取值范圍;

          (2)若,證明:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,點(diǎn)在第一象限,且,

          (1)求橢圓的標(biāo)準(zhǔn)方程;

          (2)設(shè)、為橢圓上不重合的兩點(diǎn)且異于,若的平分線(xiàn)總是垂直于軸,問(wèn)是否存在實(shí)數(shù),使得?若不存在,請(qǐng)說(shuō)明理由;若存在,求取得最大值時(shí)的的長(zhǎng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)的焦點(diǎn)為,直線(xiàn)與拋物線(xiàn)交于兩點(diǎn),是坐標(biāo)原點(diǎn).

          (1)若直線(xiàn)過(guò)點(diǎn),求直線(xiàn)的方程;

          (2)已知點(diǎn),若直線(xiàn)不與坐標(biāo)軸垂直,且,證明:直線(xiàn)過(guò)定點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,某隧道的剖面圖是由半圓及矩形組成,交通部門(mén)擬在隧道頂部安裝通風(fēng)設(shè)備(視作點(diǎn)),為了固定該設(shè)備,計(jì)劃除從隧道最高點(diǎn)處使用鋼管垂直向下吊裝以外,再在兩側(cè)自兩點(diǎn)分別使用鋼管支撐.已知道路寬,設(shè)備要求安裝在半圓內(nèi)部,所使用的鋼管總長(zhǎng)度為.

          (1)①設(shè),將表示為關(guān)于的函數(shù);

          ②設(shè),將表示為關(guān)于的函數(shù);

          (2)請(qǐng)選用(1)中的一個(gè)函數(shù)關(guān)系式,說(shuō)明如何設(shè)計(jì),所用的鋼管材料最?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案