日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線的焦點(diǎn)為,直線與拋物線交于兩點(diǎn),是坐標(biāo)原點(diǎn).

          (1)若直線過(guò)點(diǎn),求直線的方程;

          (2)已知點(diǎn),若直線不與坐標(biāo)軸垂直,且,證明:直線過(guò)定點(diǎn).

          【答案】(1);(2).

          【解析】

          (1)法一:焦點(diǎn),當(dāng)直線斜率不存在時(shí),方程為,說(shuō)明不符合題意,故直線的斜率存在,設(shè)直線方程為聯(lián)立得,利用韋達(dá)定理轉(zhuǎn)化求解,求解直線方程.

          法二:焦點(diǎn),顯然直線不垂直于軸,設(shè)直線方程為,與聯(lián)立得,設(shè),,利用韋達(dá)定理以及距離公式,轉(zhuǎn)化求解即可.

          (2)設(shè),,設(shè)直線方程為聯(lián)立得:,通過(guò)韋達(dá)定理以及斜率關(guān)系,求出直線系方程,即可推出結(jié)果.

          解:(1)法一:焦點(diǎn),

          當(dāng)直線斜率不存在時(shí),方程為,與拋物線的交點(diǎn)坐標(biāo)分別為,,

          此時(shí),不符合題意,故直線的斜率存在.

          設(shè)直線方程為聯(lián)立得,

          當(dāng)時(shí),方程只有一根,不符合題意,故.,

          拋物線的準(zhǔn)線方程為,

          由拋物線的定義得

          解得,

          所以方程為.

          法二:焦點(diǎn),顯然直線不垂直于軸,設(shè)直線方程為,

          聯(lián)立得,設(shè),,.

          ,

          ,解得,

          所以方程為.

          (2)設(shè),

          設(shè)直線方程為聯(lián)立得:,

          可得,.

          ,即.

          整理得,即,

          整理得

          ,即.

          故直線方程為過(guò)定點(diǎn).

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,

          已知圓和圓.

          1)若直線過(guò)點(diǎn),且被圓截得的弦長(zhǎng)為

          求直線的方程;(2)設(shè)P為平面上的點(diǎn),滿足:

          存在過(guò)點(diǎn)P的無(wú)窮多對(duì)互相垂直的直線,

          它們分別與圓和圓相交,且直線被圓

          截得的弦長(zhǎng)與直線被圓截得的弦長(zhǎng)相等,試求所有滿足條件的點(diǎn)P的坐標(biāo)。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,已知是半圓的直徑,,是將半圓圓周四等分的三個(gè)分點(diǎn)

          (1)從這5個(gè)點(diǎn)中任取3個(gè)點(diǎn),求這3個(gè)點(diǎn)組成直角三角形的概率;

          (2)在半圓內(nèi)任取一點(diǎn),求的面積大于的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知數(shù)列是等比數(shù)列,數(shù)列是等差數(shù)列,且, , .

          求(Ⅰ)求的通項(xiàng)公式;

          (Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某電視傳媒公司為了了解某地區(qū)電視觀眾對(duì)某類(lèi)體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖,將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱(chēng)為體育迷.若抽取100人中有女性55人,其中女體育迷有10人,完成答題卡中的列聯(lián)表并判斷能否在犯錯(cuò)誤概率不超過(guò)0.05的前提下認(rèn)為體育迷與性別有關(guān)系?

          非體育迷

          體育迷

          合計(jì)

          10

          55

          合計(jì)

          附表及公式:,.

          0.10

          0.05

          0.01

          2.706

          3.841

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,正三棱柱中,各棱長(zhǎng)均為4, 、分別是,的中點(diǎn).

          (1)求證:平面

          (2)求直線與平面所成角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)(a,bR)的導(dǎo)函數(shù)為,已知的兩個(gè)不同的零點(diǎn).

          (1)證明:;

          (2)當(dāng)b=0時(shí),若對(duì)任意x>0,不等式恒成立,求a的取值范圍;

          (3)求關(guān)于x的方程的實(shí)根的個(gè)數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在多面體ABCDEF中,底面ABCD是邊長(zhǎng)為2的菱形,,四邊形BDEF是矩形,平面平面ABCD,,HCF的中點(diǎn).

          1)求證:平面BDEF;

          2)求直線DH與平面CEF所成角的正弦值;

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知橢圓C:的右焦點(diǎn)為F,點(diǎn)A(一2,2)為橢圓C內(nèi)一點(diǎn)。若橢圓C上存在一點(diǎn)P,使得|PA|+|PF|=8,則m的最大值是___

          查看答案和解析>>

          同步練習(xí)冊(cè)答案