日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)為自然對數(shù)的底數(shù)).
          (1)求函數(shù)上的單調(diào)區(qū)間;
          (2)設(shè)函數(shù),是否存在區(qū)間,使得當(dāng)時函數(shù)的值域為,若存在求出,若不存在說明理由.

          (1)時,為單調(diào)增區(qū)間;時,為單調(diào)遞減區(qū)間,為單調(diào)遞增區(qū)間;時,單調(diào)遞減區(qū)間為:, 單調(diào)遞增區(qū)間為:時,單調(diào)遞增區(qū)間為:.
          (2)不存在.證明詳見解析.

          解析試題分析:(1)先求導(dǎo),然后根據(jù)導(dǎo)數(shù)的性質(zhì):的解集是區(qū)間,的解集是減區(qū)間求解即可.
          (2)先求導(dǎo)可得,假設(shè)存在假設(shè)存在區(qū)間,使得當(dāng)時函數(shù)的值域為,即,所以,[m,n]為增區(qū)間,
          由g(m)和g(n)的值可得方程有兩個大于的相異實根,再構(gòu)造函數(shù),求,根據(jù)導(dǎo)函數(shù)的性質(zhì),求函數(shù)單調(diào)區(qū)間和極值,證明h(x)在只存在一個零點即可.
          試題解析:(1)    1分
          ①當(dāng)時,由恒成立,上單調(diào)遞增    2分
          ②當(dāng)時,解得
          (。┤,則
          上單調(diào)遞減,在上單調(diào)遞增    4分
          (ⅱ)若,則 
          上單調(diào)遞增,
          上單調(diào)遞減    6分
          綜上所述:當(dāng)時,的單調(diào)遞減區(qū)間為:,
          單調(diào)遞增區(qū)間為:
          當(dāng)時,的單調(diào)遞減區(qū)間為:
          單調(diào)遞增區(qū)間為:;
          當(dāng)時,單調(diào)遞增區(qū)間為:.    7分
          (2)由題意,    8分
          假設(shè)存在區(qū)間,使得當(dāng)時函數(shù)的值域為,即,
          當(dāng)在區(qū)間單調(diào)遞增   9分
          ,即方程有兩個大于的相異實根    10分
          設(shè)
              11分
          設(shè)
          ,上單調(diào)增,又

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (1)求函數(shù)的單調(diào)區(qū)間;
          (2)若方程有且只有一個解,求實數(shù)m的取值范圍;
          (3)當(dāng),時,若有,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,半徑為30的圓形(為圓心)鐵皮上截取一塊矩形材料,其中點在圓弧上,點在兩半徑上,現(xiàn)將此矩形材料卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)與矩形材料的邊的夾角為,圓柱的體積為.

          (Ⅰ)求關(guān)于的函數(shù)關(guān)系式?
          (Ⅱ)求圓柱形罐子體積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),.
          (1)若,則,滿足什么條件時,曲線處總有相同的切線?
          (2)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
          (3)當(dāng)時,若對任意的恒成立,求的取值的集合.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=lnx-ax(a>0).
          (I)當(dāng)a=2時,求f(x)的單調(diào)區(qū)間與極值;
          (Ⅱ)若對于任意的x∈(0,+),都有f(x)<0,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知,函數(shù).
          (1)當(dāng)時,討論函數(shù)的單調(diào)性;
          (2)當(dāng)有兩個極值點(設(shè)為)時,求證:.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù),
          (Ⅰ)當(dāng)時,求函數(shù)的極小值;
          (Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
          (Ⅰ)當(dāng)時,求的極值;
          (Ⅱ)當(dāng)a>0時,討論的單調(diào)性;
          (Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知函數(shù).
          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;
          (Ⅱ)若函數(shù)上是減函數(shù),求實數(shù)a的最小值;
          (Ⅲ)若,使)成立,求實數(shù)a的取值范圍.

          查看答案和解析>>