日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù),
          (Ⅰ)當時,求函數(shù)的極小值;
          (Ⅱ)若函數(shù)上為增函數(shù),求的取值范圍.

          (Ⅰ);(Ⅱ)

          解析試題分析:(Ⅰ)先求導數(shù),及其零點,判斷導數(shù)符號變化,即可得原函數(shù)增減變化,可得其極值。(Ⅱ)函數(shù)是增函數(shù),轉(zhuǎn)化為,對恒成立問題。即的最小值大于等于0.將問題最終轉(zhuǎn)化為求的最小值問題。仍用導數(shù)求單調(diào)性,用單調(diào)性求最值的方法求的最小值。所以需設(shè)函數(shù),對函數(shù)重新求導,求極值。判斷導數(shù)符號變化,得的增減區(qū)間,的最小值。
          試題解析:解:(Ⅰ)定義域
          時,,
          ,得
          時,,為減函數(shù);
          時,,為增函數(shù).
          所以函數(shù)的極小值是.                         5分
          (Ⅱ)由已知得
          因為函數(shù)是增函數(shù),所以,對恒成立.
          ,即恒成立.
          設(shè),要使“恒成立”,只要
          因為,令
          時,,為減函數(shù);
          時,為增函數(shù).
          所以上的最小值是
          故函數(shù)是增函數(shù)時,實數(shù)的取值范圍是      13分
          考點:1函數(shù)的概念和性質(zhì);2導數(shù)和利用導數(shù)研究函數(shù)性質(zhì)。

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)f(x)=exkx2x∈R.
          (1)若k,求證:當x∈(0,+∞)時,f(x)>1;
          (2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍;
          (3)求證:<e4(n∈N*)..

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)當時,求函數(shù)的單調(diào)區(qū)間;
          (2)若函數(shù)有兩個極值點,且,求證:;
          (Ⅲ)設(shè),對于任意時,總存在,使成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)為自然對數(shù)的底數(shù)).
          (1)求函數(shù)上的單調(diào)區(qū)間;
          (2)設(shè)函數(shù),是否存在區(qū)間,使得當時函數(shù)的值域為,若存在求出,若不存在說明理由.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù).
          (1)當時,求函數(shù)的單調(diào)區(qū)間;
          (2)若函數(shù)在區(qū)間上為減函數(shù),求實數(shù)的取值范圍;
          (3)當時,不等式恒成立,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          。
          (Ⅰ)求的極值點;
          (Ⅱ)當時,若方程上有兩個實數(shù)解,求實數(shù)t的取值范圍;
          (Ⅲ)證明:當時,

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù),其中
          (Ⅰ)若是函數(shù)的極值點,求實數(shù)的值;
          (Ⅱ)若對任意的為自然對數(shù)的底數(shù))都有成立,求實數(shù)的取值范圍

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          已知函數(shù)(其中,e是自然對數(shù)的底數(shù)).
          (Ⅰ)若,試判斷函數(shù)在區(qū)間上的單調(diào)性;
          (Ⅱ)若函數(shù)有兩個極值點),求k的取值范圍;
          (Ⅲ)在(Ⅱ)的條件下,試證明

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:解答題

          某商場預計2014年從1月起前個月顧客對某種商品的需求總量(單位:件)
          (1)寫出第個月的需求量的表達式;
          (2)若第個月的銷售量(單位:件),每件利潤(單位:元),求該商場銷售該商品,預計第幾個月的月利潤達到最大值?月利潤的最大值是多少?(參考數(shù)據(jù):

          查看答案和解析>>

          同步練習冊答案