【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當a=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
【答案】(1)的單調(diào)增區(qū)間是
(2)
【解析】
(1)定義域為R,
或
所以
的單調(diào)增區(qū)間為
(2)
或
故-2,-a有可能是
的極值點,列表判斷出
時
取得極大值且極大值是
列方程求出a.函數(shù)的單調(diào)性與導數(shù),函數(shù)的極值
試題解析:(1)當a=1時,f(x)=(x2+x+1)ex,∴f′(x)=(x2+3x+2)ex.
由f′(x)≥0,得x2+3x+2≥0,解得x≤-2或x≥-1.
∴f(x)的單調(diào)遞增區(qū)間是(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex.由f′(x)=0,得x=-2或x=-a.
∵a<2,∴-a>-2.
當x變化時,f′(x),f(x)變化情況列表如下:
∴x=-2時,f(x)取得極大值.而f(-2)=(4-a)·e-2,
∴(4-a)e-2=6×e-2.∴a=-2.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,側(cè)面
底面
,底面
是平行四邊形,
,
,
,
為
的中點,點
在線段
上.
(Ⅰ)求證: ;
(Ⅱ)試確定點的位置,使得直線
與平面
所成的角和直線
與平面
所成的角相等.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機摘下了100個蜜柚進行測重,其質(zhì)量分別在,
,
,
,
,
單位:克
中,其頻率分布直方圖如圖所示.
Ⅰ
按分層抽樣的方法從質(zhì)量落在
,
的蜜柚中抽取5個,再從這5個蜜柚中隨機抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
Ⅱ
以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元千克收購;
B.低于2250克的蜜柚以60元個收購,高于或等于2250克的以80元
個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學平均分分別是a、b,則這兩個級部的數(shù)學平均分為
③某中學采用系統(tǒng)抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現(xiàn)將800名學生從001到800進行編號,已知從497--512這16個數(shù)中取得的學生編號是503,則初始在第1小組00l~016中隨機抽到的學生編號是007.
其中命題正確的個數(shù)是( )
A.0個 B.1個 C.2個 D.3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
求函數(shù)
的單調(diào)區(qū)間和極值.
若函數(shù)
在區(qū)間
內(nèi)恰有兩個零點,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知a<2,函數(shù)f(x)=(x2+ax+a)ex.
(1)當a=1時,求f(x)的單調(diào)遞增區(qū)間;
(2)若f(x)的極大值是6e-2,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:
的焦點到準線的距離為2,直線
與拋物線
交于
、
兩點,若存在點
使得
為等邊三角形,則
( )
A. 8 B. 10 C. 12 D. 14
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com