日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在某單位的職工食堂中,食堂每天以元/個的價格從面包店購進面包,然后以元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進了90個面包,以(單位:個, )表示面包的需求量, (單位:元)表示利潤.

          (Ⅰ)求關(guān)于的函數(shù)解析式;

          (Ⅱ)根據(jù)直方圖估計利潤不少于元的概率;

          III)在直方圖的需求量分組中,以各組的區(qū)間中點值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量,則取,且的概率等于需求量落入的頻率),求的分布列和數(shù)學(xué)期望.

          【答案】(Ⅰ);(Ⅱ)見解析.

          【解析】試題分析:(Ⅰ)由題意,當(dāng)時,利潤,當(dāng)時,利潤,即可得到利潤的表達式.

          (Ⅱ)由題意,設(shè)利潤不少于100元為事件,由(Ⅰ)知和直方圖可知,即可求解概率.

          (III)由題意,由于 , ,

          可得利潤的取值,求得各個取值的概率,即可列出分布列,求得數(shù)學(xué)期望.

          試題解析:

          (Ⅰ)由題意,當(dāng)時,利潤,

          當(dāng)時,利潤,

          (Ⅱ)由題意,設(shè)利潤不少于100元為事件,由(Ⅰ)知,利潤不少于100元時,即, ,即,

          由直方圖可知,當(dāng)時,所求概率:

          III)由題意,由于, ,

          故利潤的取值可為: , ,

          , ,

          的分布列為:

          利潤的數(shù)學(xué)期望

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知集合A={x|x2﹣6x+8<0},B={x|(x﹣a)(x﹣3a)<0}.
          (1)若a=1,求A∩B;
          (2)若A∩B=,求a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

          日 期

          121

          122

          123

          124

          125

          溫差°C

          10

          11

          13

          12

          8

          發(fā)芽數(shù)(顆)

          23

          25

          30

          26

          16

          該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.

          1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

          2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

          3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

          (注:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)= ﹣a是奇函數(shù)
          (1)求實數(shù)a的值;
          (2)判斷函數(shù)在R上的單調(diào)性并用函數(shù)單調(diào)性的定義證明;
          (3)對任意的實數(shù)x,不等式f(x)<m﹣1恒成立,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)=log2(4x)log2(2x)的定義域為 . (Ⅰ)若t=log2x,求t的取值范圍;
          (Ⅱ)求y=f(x)的最大值與最小值,并求取得最值時對應(yīng)的x的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某企業(yè)為了對生產(chǎn)的一種新產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到以下數(shù)據(jù):

          單價x(元/件)

          60

          62

          64

          66

          68

          70

          銷量y(件)

          91

          84

          81

          75

          70

          67

          I)畫出散點圖,并求關(guān)于的回歸方程;

          II)已知該產(chǎn)品的成本是36/件,預(yù)計在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,為使企業(yè)獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元(精確到元)?

          附:回歸直線的斜率和截距的最小二乘法估計公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】f(x)=(m﹣1)x2+2mx+3為偶函數(shù),則f(x)在區(qū)間(2,5)上是(
          A.減函數(shù)
          B.增函數(shù)
          C.有增有減
          D.增減性不確定

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】“微信運動”已成為當(dāng)下熱門的健身方式,小王的微信朋友圈內(nèi)也有大量好友參與了“微信運動”,他隨機選取了其中的40人(男、女各20人),記錄了他們某一天的走路步數(shù),并將數(shù)據(jù)整理如下:

          (1)若采用樣本估計總體的方式,試估計小王的所有微信好友中每日走路步數(shù)超過5000步的概率;

          (2)已知某人一天的走路步數(shù)超過8000步被系統(tǒng)評定“積極型”,否則為“懈怠型”,根據(jù)題意完成下面的列聯(lián)表,并據(jù)此判斷能否有95%以上的把握認為“評定類型”與“性別”有關(guān)?

          附: ,

          0.10

          0.05

          0.025

          0.010

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線 交橢圓于 兩不同的點.

          (1)求橢圓的方程;

          (2)若直線不過點,求證:直線 軸圍成等腰三角形.

          查看答案和解析>>

          同步練習(xí)冊答案