日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】若直線被圓截得的弦長(zhǎng)為4,則當(dāng)取最小值時(shí)直線的斜率為( )

          A. 2 B. C. D.

          【答案】A

          【解析】

          由已知中圓的方程x2+y2+2x﹣4y+1=0我們可以求出圓心坐標(biāo),及圓的半徑,結(jié)合直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+2x﹣4y+1=0所截得的弦長(zhǎng)為4,我們易得到a,b的關(guān)系式,再根據(jù)基本不等式中1的活用,即可得到答案.

          圓x2+y2+2x﹣4y+1=0是以(﹣1,2)為圓心,以2為半徑的圓,

          直線ax﹣by+2=0(a>0,b>0)被圓x2+y2+2x﹣4y+1=0所截得的弦長(zhǎng)為4,

          直線過(guò)圓心,

          ∴a+2b=2,

          =)(a+2b)=(4++)≥(4+4)=4,當(dāng)且僅當(dāng)a=2b時(shí)等號(hào)成立.

          ∴k=2

          故選:A.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,,四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品預(yù)測(cè)如下:

          甲說(shuō):“是作品獲得一等獎(jiǎng)”;

          乙說(shuō):“作品獲得一等獎(jiǎng)”;

          丙說(shuō):“兩項(xiàng)作品未獲得一等獎(jiǎng)”;

          丁說(shuō):“是作品獲得一等獎(jiǎng)”.

          若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系.
          (Ⅰ)求曲線C1和曲線C2的直角坐標(biāo)方程;
          (Ⅱ)若點(diǎn)P是曲線C1上一動(dòng)點(diǎn),過(guò)點(diǎn)P作線段OP的垂線交曲線C2于點(diǎn)Q,求線段PQ長(zhǎng)度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三次函數(shù)過(guò)點(diǎn),且函數(shù)在點(diǎn)處的切線恰好是直線.

          (Ⅰ)求函數(shù)的解析式;

          (Ⅱ) 設(shè)函數(shù),若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在極坐標(biāo)系中,已知曲線C1:ρ=2cosθ和曲線C2:ρcosθ=3,以極點(diǎn)O為坐標(biāo)原點(diǎn),極軸為x軸非負(fù)半軸建立平面直角坐標(biāo)系.
          (Ⅰ)求曲線C1和曲線C2的直角坐標(biāo)方程;
          (Ⅱ)若點(diǎn)P是曲線C1上一動(dòng)點(diǎn),過(guò)點(diǎn)P作線段OP的垂線交曲線C2于點(diǎn)Q,求線段PQ長(zhǎng)度的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】執(zhí)行如圖所示的程序框圖,若輸出s的值為11,那么輸入的n值等于(

          A.5
          B.6
          C.7
          D.8

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在空間中,給出下列說(shuō)法:①平行于同一個(gè)平面的兩條直線是平行直線;②垂直于同一條直線的兩個(gè)平面是平行平面;③若平面內(nèi)有不共線的三點(diǎn)到平面的距離相等,則;④過(guò)平面的一條斜線,有且只有一個(gè)平面與平面垂直.其中正確的是(

          A. ①③B. ②④C. ①④D. ②③

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的非負(fù)半軸重合,若曲線C1的方程為ρsin(θ+ )+2 =0,曲線C2的參數(shù)方程為 (θ為參數(shù)).
          (1)將C1的方程化為直角坐標(biāo)方程;
          (2)若點(diǎn)Q為C2上的動(dòng)點(diǎn),P為C1上的動(dòng)點(diǎn),求|PQ|的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在我國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中將由四個(gè)直角三角形組成的四面體稱為“鱉臑”.已知三棱維中,底面.

          (1)從三棱錐中選擇合適的兩條棱填空_________⊥________,則該三棱錐為“鱉臑”;

          (2)如圖,已知垂足為,垂足為.

          (i)證明:平面⊥平面;

          (ii)作出平面與平面的交線,并證明是二面角的平面角.(在圖中體現(xiàn)作圖過(guò)程不必寫(xiě)出畫(huà)法)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案