日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知三次函數(shù)過點(diǎn),且函數(shù)在點(diǎn)處的切線恰好是直線.

          (Ⅰ)求函數(shù)的解析式;

          (Ⅱ) 設(shè)函數(shù),若函數(shù)在區(qū)間上有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

          【答案】(1)f(x)=x3﹣3x2(2)[﹣1,6).

          【解析】分析:(1)根據(jù)已知條件即可建立關(guān)于b、c、d的三個(gè)方程,解方程即可求出b、c、d,從而求出函數(shù)的解析式;

          (2)由已知條件得:f(x)﹣g(x)=0在[﹣2,1]上有兩個(gè)不同的解,即x3﹣3x2﹣9x﹣m+1=0在區(qū)間[﹣2,1]有兩個(gè)不同的解,即m=x3﹣3x2﹣9x+1在[﹣2,1]上有兩個(gè)不同解,求函數(shù)x3﹣3x2﹣9x+1在區(qū)間[﹣2,1]上的取值范圍,要使方程有兩個(gè)不同的解,從而求出因滿足的范圍,這樣便求出了的取值范圍.

          詳解:(1)f′(x)=3x2+2bx+c,由已知條件得:

          ,解得b=﹣3,c=d=0;

          ∴f(x)=x3﹣3x2

          (2)由已知條件得:f(x)﹣g(x)=0在[﹣2,1]上有兩個(gè)不同的解;

          即x3﹣3x2﹣9x﹣m+1=0在區(qū)間[﹣2,1]有兩個(gè)不同的解;

          即m=x3﹣3x2﹣9x+1在[﹣2,1]上有兩個(gè)不同解.

          令h(x)=x3﹣3x2﹣9x+1,h′(x)=3x2﹣6x﹣9,x∈[﹣2,1];

          解3x2﹣6x﹣9>0得:﹣2≤x<﹣1;解3x2﹣6x﹣9<0得:﹣1<x≤1;

          ∴h(x)max=h(﹣1)=6,又f(﹣2)=﹣1,f(1)=﹣10,∴h(x)min=﹣10;

          m=h(x)在區(qū)間[﹣2,1]上有兩個(gè)不同的解,∴﹣1≤m<6.

          ∴實(shí)數(shù)m的取值范圍是[﹣1,6).

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知為圓上一動(dòng)點(diǎn),圓心關(guān)于軸的對稱點(diǎn)為,點(diǎn)分別是線段上的點(diǎn),且.

          (1)求點(diǎn)的軌跡方程;

          (2)直線與點(diǎn)的軌跡只有一個(gè)公共點(diǎn),且點(diǎn)在第二象限,過坐標(biāo)原點(diǎn)且與垂直的直線與圓相交于兩點(diǎn),求面積的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某市為提高市民的戒煙意識,通過一個(gè)戒煙組織面向全市煙民征招志愿戒煙者,從符合條件的志愿者中隨機(jī)抽取100名,將年齡分成,,,,五組,得到頻率分布直方圖如圖所示.

          (1)求圖中的值,并估計(jì)這100名志愿者的平均年齡(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)若年齡在的志愿者中有2名女性煙民,現(xiàn)從年齡在的志愿者中隨機(jī)抽取2人,求至少有一名女性煙民的概率;

          (3)該戒煙組織向志愿者推薦了,兩種戒煙方案,這100名志愿者自愿選取戒煙方案,并將戒煙效果進(jìn)行統(tǒng)計(jì)如下:

          有效

          無效

          合計(jì)

          方案

          48

          60

          方案

          36

          合計(jì)

          完成上面的列聯(lián)表,并判斷是否有的把握認(rèn)為戒煙方案是否有效與方案選取有關(guān).

          參考公式:,.

          參考數(shù)據(jù):

          0.15

          0.10

          0.05

          0.025

          2.072

          2.706

          3.841

          5.024

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】有甲、乙兩個(gè)桔柚(球形水果)種植基地,已知所有采摘的桔柚的直徑都在范圍內(nèi)(單位:毫米,以下同),按規(guī)定直徑在內(nèi)為優(yōu)質(zhì)品,現(xiàn)從甲、乙兩基地所采摘的桔柚中各隨機(jī)抽取500個(gè),測量這些桔柚的直徑,所得數(shù)據(jù)整理如下:

          直徑分組

          甲基地頻數(shù)

          10

          30

          120

          175

          125

          35

          5

          乙基地頻數(shù)

          5

          35

          115

          165

          110

          60

          10

          (1)根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)完成下面列聯(lián)表,并回答是否有以上的把握認(rèn)為“桔柚直徑與所在基地有關(guān)?”

          甲基地

          乙基地

          合計(jì)

          優(yōu)質(zhì)品

          _________

          _________

          _________

          非優(yōu)質(zhì)品

          _________

          _________

          _________

          合計(jì)

          _________

          _________

          _________

          (2)求優(yōu)質(zhì)品率較高的基地的500個(gè)桔柚直徑的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表);

          (3)記甲基地直徑在范圍內(nèi)的五個(gè)桔柚分別為、、,現(xiàn)從中任取二個(gè),求含桔柚的概率.

          附:,.

          0.10

          0.05

          0.010

          0.005

          0.001

          2.706

          3.841

          6.635

          7.879

          10.828

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線C:y2=2px(p>0)過點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
          (Ⅰ)求拋物線C的方程;
          (Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過點(diǎn)E作不經(jīng)過原點(diǎn)的兩條直線分別與拋物線C和圓F:(x﹣1)2+y2=1相切,切點(diǎn)分別為A,B,求證:直線AB過定點(diǎn)F(1,0).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,三棱柱的側(cè)面是邊長為的菱形,,且

          1)求證:;

          2)若,當(dāng)二面角為直二面角時(shí),求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】若直線被圓截得的弦長為4,則當(dāng)取最小值時(shí)直線的斜率為( )

          A. 2 B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】甲乙兩地生產(chǎn)某種產(chǎn)品,他們可以調(diào)出的數(shù)量分別為300噸、750.A,B,C三地需要該產(chǎn)品數(shù)量分別為200噸,450噸,400噸,甲地運(yùn)往A,B,C三地的費(fèi)用分別為6/噸、3/噸,5/噸,乙地運(yùn)往A,B,C三地的費(fèi)用分別為5/噸,9/噸,6/噸,問怎樣調(diào)運(yùn),才能使總運(yùn)費(fèi)最小?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某工廠為檢驗(yàn)車間一生產(chǎn)線工作是否正常,現(xiàn)從生產(chǎn)線中隨機(jī)抽取一批零件樣本,測量它們的尺寸(單位:)并繪成頻率分布直方圖,如圖所示.根據(jù)長期生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條生產(chǎn)線正常狀態(tài)下生產(chǎn)的零件尺寸服從正態(tài)分布,其中近似為零件樣本平均數(shù),近似為零件樣本方差.

          (1)求這批零件樣本的的值(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);

          (2)假設(shè)生產(chǎn)狀態(tài)正常,求;

          (3)若從生產(chǎn)線中任取一零件,測量其尺寸為,根據(jù)原則判斷該生產(chǎn)線是否正常?

          附:;若,則, ,.

          查看答案和解析>>

          同步練習(xí)冊答案