【題目】橢圓C: 的左、右頂點(diǎn)分別為A1、A2,點(diǎn)P在C上且直線PA2的斜率的取值范圍是[-2,-1],那么直線PA1斜率的取值范圍是________.
【答案】
【解析】由題意可得,A1(-2,0),A2(2,0),
當(dāng)PA2的斜率為-2時(shí),直線PA2的方程為y=-2(x-2),
代入橢圓方程,消去y化簡(jiǎn)得19x2-64x+52=0,
解得x=2或x=.
由PA2的斜率存在可得點(diǎn)P,
此時(shí)直線PA1的斜率k=.
同理,當(dāng)直線PA2的斜率為-1時(shí),
直線PA2的方程為y=-(x-2),
代入橢圓方程,消去y化簡(jiǎn)得7x2-16x+4=0,解得x=2或x=
由PA2的斜率存在可得點(diǎn)P,
此時(shí)直線PA1的斜率k=.
數(shù)形結(jié)合可知,直線PA1斜率的取值范圍是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論在
上的單調(diào)性;
(2)是否存在實(shí)數(shù)a,使得在
上的最大值為
,若存在,求滿足條件的a的個(gè)數(shù);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線
的參數(shù)方程是
(
為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
.
(1)寫出曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)、
分別在
、
上運(yùn)動(dòng),若
的最小值為1,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,離心率
,過
且與
軸垂直的直線與橢圓
在第一象限內(nèi)的交點(diǎn)為
,且
.
(1)求橢圓的方程;
(2)過點(diǎn)的直線
交橢圓
于
兩點(diǎn),當(dāng)
時(shí),求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直角三角形中,
是
的中點(diǎn),
是線段
上一個(gè)動(dòng)點(diǎn),且
,如圖所示,沿
將
翻折至
,使得平面
平面
.
(1)當(dāng)時(shí),證明:
平面
;
(2)是否存在,使得
與平面
所成的角的正弦值是
?若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F1到直線AB的距離為|OB|.
(1)求橢圓C的方程;
(2)如圖,若橢圓,橢圓
,則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長(zhǎng)|MN|的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,長(zhǎng)方體中,
,
,點(diǎn)
,
,
分別為
,
,
的中點(diǎn),過點(diǎn)
的平面
與平面
平行,且與長(zhǎng)方體的面相交,交線圍成一個(gè)幾何圖形.
(1)在圖中畫出這個(gè)幾何圖形(說明畫法,不需要說明理由);
(2)求二面角 的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象與
軸正半軸交點(diǎn)的橫坐標(biāo)依次構(gòu)成一個(gè)公差為
的等差數(shù)列,把函數(shù)
的圖象沿
軸向右平移
個(gè)單位,得到函數(shù)
的圖象,則下列敘述不正確的是( )
A. 的圖象關(guān)于點(diǎn)
對(duì)稱 B.
的圖象關(guān)于直線
對(duì)稱
C. 在
上是增函數(shù) D.
是奇函數(shù)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com