【題目】在直角坐標(biāo)系中,圓經(jīng)過伸縮變換
后得到曲線
.以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的正半軸為極軸,并在兩種坐標(biāo)系中取相同的單位長度,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的直角坐標(biāo)方程及直線
的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)是
上一動(dòng)點(diǎn),求點(diǎn)
到直線
的距離的最大值.
【答案】(1),
;(2)
【解析】
(Ⅰ)由經(jīng)過伸縮變換
,可得曲線
的方程,由極坐標(biāo)方程
可得直線
的直角坐標(biāo)方程.
(Ⅱ)因?yàn)闄E圓的參數(shù)方程為 (
為參數(shù)),所以可設(shè)點(diǎn)
,
由點(diǎn)到直線的距離公式,點(diǎn)到直線
的距離為
由三角函數(shù)性質(zhì)可求點(diǎn)
到直線
的距離的最大值.
(Ⅰ)由經(jīng)過伸縮變換
,可得曲線
的方程為
,即
,由極坐標(biāo)方程
可得直線
的直角坐標(biāo)方程為
.
(Ⅱ)因?yàn)闄E圓的參數(shù)方程為 (
為參數(shù)),所以可設(shè)點(diǎn)
,
由點(diǎn)到直線的距離公式,點(diǎn)到直線
的距離為
(其中
,
),由三角函數(shù)性質(zhì)知,當(dāng)
時(shí),點(diǎn)
到直線
的距離有最大值
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,x
R其中a>0.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在區(qū)間(-3,0)內(nèi)恰有兩個(gè)零點(diǎn),求a的取值范圍;
(Ⅲ)當(dāng)a=1時(shí),設(shè)函數(shù)f(x)在區(qū)間[t,t+3]上的最大值為M(t),最小值為m(t),記 ,求函數(shù)g(t)在區(qū)間[-4,-1]上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,且過點(diǎn)
.
(Ⅰ)求橢圓的方程;
(Ⅱ)過橢圓的左焦點(diǎn)的直線
與橢圓
交于
兩點(diǎn),直線
過坐標(biāo)原點(diǎn)且與直線
的斜率互為相反數(shù).若直線
與橢圓交于
兩點(diǎn)且均不與點(diǎn)
重合,設(shè)直線
與
軸所成的銳角為
,直線
與
軸所成的銳角為
,判斷
與
的大小關(guān)系并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓:
的左右焦點(diǎn)分別為
,
,左右頂點(diǎn)分別為
,
,
為橢圓
上的動(dòng)點(diǎn)(不與
,
重合),且直線
與
的斜率的乘積為
.
(1)求橢圓的方程;
(2)過作兩條互相垂直的直線
與
(均不與
軸重合)分別與橢圓
交于
,
,
,
四點(diǎn),線段
、
的中點(diǎn)分別為
、
,求證:直線
過定點(diǎn),并求出該定點(diǎn)坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了了解某省各景點(diǎn)在大眾中的熟知度,隨機(jī)對(duì)15~65歲的人群抽樣了人,回答問題“某省有哪幾個(gè)著名的旅游景點(diǎn)?”統(tǒng)計(jì)結(jié)果如下圖表
組號(hào) | 分組 | 回答正確 的人數(shù) | 回答正確的人數(shù) 占本組的頻率 |
第1組 | [15,25) | 0.5 | |
第2組 | [25,35) | 18 | |
第3組 | [35,45) | 0.9 | |
第4組 | [45,55) | 9 | 0.36 |
第5組 | [55,65] | 3 |
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,求第2,3,4組每組各抽取多少人?
(3)在(2)抽取的6人中隨機(jī)抽取2人,求所抽取的人中恰好沒有第3組人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各題中,是
的什么條件?
(1)為自然數(shù),
為整數(shù);
(2);
(3);
(4):四邊形的一組對(duì)邊相等,
:四邊形為平行四邊形;
(5):四邊形的對(duì)角線互相垂直,
:四邊形為菱形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)其中
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)有兩個(gè)零點(diǎn),
(i)求的取值范圍;
(ii)設(shè)的兩個(gè)零點(diǎn)分別為x1,x2,證明:x1x2>e2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年電子商務(wù)蓬勃發(fā)展, 年某網(wǎng)購平臺(tái)“雙
”一天的銷售業(yè)績高達(dá)
億元人民幣,平臺(tái)對(duì)每次成功交易都有針對(duì)商品和快遞是否滿意的評(píng)價(jià)系統(tǒng).從該評(píng)價(jià)系統(tǒng)中選出
次成功交易,并對(duì)其評(píng)價(jià)進(jìn)行統(tǒng)計(jì),網(wǎng)購者對(duì)商品的滿意率為
,對(duì)快遞的滿意率為
,其中對(duì)商品和快遞都滿意的交易為
次.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并回答能否有
的把握認(rèn)為“網(wǎng)購者對(duì)商品滿意與對(duì)快遞滿意之間有關(guān)系”?
對(duì)快遞滿意 | 對(duì)快遞不滿意 | 合計(jì) | |
對(duì)商品滿意 | |||
對(duì)商品不滿意 | |||
合計(jì) |
(2)若將頻率視為概率,某人在該網(wǎng)購平臺(tái)上進(jìn)行的次購物中,設(shè)對(duì)商品和快遞都滿意的次數(shù)為隨機(jī)變量
,求
的分布列和數(shù)學(xué)期望
.
附: (其中
為樣本容量)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(
是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若,證明:曲線
沒有經(jīng)過點(diǎn)
的切線;
(Ⅱ)若函數(shù)在其定義域上不單調(diào),求
的取值范圍;
(Ⅲ)是否存在正整數(shù),當(dāng)
時(shí),函數(shù)
的圖象在
軸的上方,若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com