(本題滿分12分)如圖,在四棱錐中,底面
為平行四邊形,
,
,
為
中點,
平面
,
,
為
中點.
(1)證明://平面
;
(2)證明:平面
;
(3)求直線與平面
所成角的正切值.
(1)先證PB//MO,再利用線面平行的判定定理即可證明;
(2)分別證明,
,根據(jù)線面垂直的判定定理可證;(3)
解析試題分析:(1)連接BD,MO,在平行四邊形ABCD中,
因為O為AC的中點,所以O(shè)為BD的中點,
又M為PD的中點,所以PB//MO。 ……2分
因為平面ACM,
平面ACM,所以PB//平面ACM。 ……4分
(2)因為,且AD=AC=1,所以
,即
, ……6分
又PO平面ABCD,
平面ABCD,所以
,所以
平面PAC。 ……8分
(3)取DO中點N,連接MN,AN,因為M為PD的中點,所以MN//PO,
且平面ABCD,得
平面ABCD,
所以是直線AM與平面ABCD所成的角, ……10分
在中,
,所以
,
從而,
在,
即直線AM與平面ABCD所成角的正切值為 ……12分
考點:本小題主要考查空間中線面平行和線面垂直的證明以及線面角的求解,考查學生的空間想象能力和推理論證能力以及運算求解能力.
點評:在空間中證明直線、平面之間的位置關(guān)系時要嚴格按照判定定理和性質(zhì)定理進行,定理中要求的條件缺一不可.
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)如圖是從上下底面處在水平狀態(tài)下的棱長為的正方體
中分離出來的:
(1)試判斷是否在平面
內(nèi);(回答是與否)
(2)求異面直線與
所成的角;
(3)如果用圖示中這樣一個裝置來盛水,那么最多可以盛多少體積
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖所示,在直棱柱中,
,
,
的中點.
(1)求證:∥
;
(2)求證:;
(3)在上是否存在一點
,使得
,若存在,試確定
的位置,并判斷
與平面
是否垂直?若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分)如圖,在直三棱柱中,底面
為等邊三角形,且
,
、
、
分別是
,
的中點.
(1)求證:∥
;
(2)求證:;
(3) 求直線與平面
所成的角.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分15分) 如圖,四邊形中,
為正三角形,
,
,
與
交于
點.將
沿邊
折起,使
點至
點,已知
與平面
所成的角為
,且
點在平面
內(nèi)的射影落在
內(nèi).
(Ⅰ)求證:平面
;
(Ⅱ)若已知二面角的余弦值為
,求
的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,在長方體中,
,且
.
(I)求證:對任意,總有
;
(II)若,求二面角
的余弦值;
(III)是否存在,使得
在平面
上的射影平分
?若存在, 求出
的值, 若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com