日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. (本題滿分15分) 如圖,四邊形中,為正三角形,,,交于點.將沿邊折起,使點至點,已知與平面所成的角為,且點在平面內(nèi)的射影落在內(nèi).

          (Ⅰ)求證:平面;
          (Ⅱ)若已知二面角的余弦值為,求的大小.

          (Ⅰ)只需證、即可;(Ⅱ)。

          解析試題分析:(Ⅰ)易知的中點,
          ,又,
          平面,
          所以平面   (5分)
          (Ⅱ)方法一:以軸,軸,過垂直于
          平面向上的直線為軸建立如圖所示空間
          直角坐標系,則,       (7分)
          易知平面的法向量為 (8分)
          ,設(shè)平面的法向量為
          則由得,
          解得,,令,則 (11分)

          解得,,即,即
          ,∴   故.(15分)   
          考點:線面垂直的判定定理;線面角;二面角的求法。
          點評:用綜合法求二面角,往往需要作出平面角,這是幾何中一大難點,而用向量法求解二面角無需作出二面角的平面角,只需求出平面的法向量,經(jīng)過簡單運算即可,從而體現(xiàn)了空間向量的巨大作用.二面角的向量求法: ①若AB、CD分別是二面的兩個半平面內(nèi)與棱垂直的異面直線,則二面角的大小就是向量的夾角; ②設(shè)分別是二面角的兩個面α,β的法向量,則向量的夾角(或其補角)的大小就是二面角的平面角的大小。

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          有一個正四棱臺形狀的油槽,可以裝油190L,假如它的兩底面邊長分別等于60cm和40cm,求它的深度為多少cm?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)
          如圖,四棱錐中,底面為矩形,平面,點分別是的中點.

          求證:平面
          , 四棱錐外接球的表面積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)如圖,在四棱錐中,底面為平行四邊形,,中點,平面, ,
          中點.

          (1)證明://平面;
          (2)證明:平面;
          (3)求直線與平面所成角的正切值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分11分)
          如圖示,給出的是某幾何體的三視圖,其中正視圖與側(cè)視圖都是邊長為2的正三角形,俯視圖為半徑等于1的圓.試求這個幾何體的側(cè)面積與體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本題滿分12分)如圖,在底面為直角梯形的四棱錐,平面,,

          (Ⅰ)求證:;
          (Ⅱ)求直線與平面所成的角;
          (Ⅲ)設(shè)點在棱上,  ,若∥平面,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          (本小題滿分12分)一個多面體的直觀圖和三視圖如圖所示,其中、分別是、的中點.
          (1)求證:平面
          (2)在線段上(含、端點)確定一點,使得平面,并給出證明;
          (3)一只小飛蟲在幾何體內(nèi)自由飛,求它飛入幾何體內(nèi)的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          已知梯形ABCD中,AD∥BC,∠ABC ="∠BAD" =,AB=BC=2AD=4,
          E、F分別是AB、CD上的點,且EF∥BC.設(shè)AE =,G是BC的中點.
          沿EF將梯形ABCD翻折,使平面AEFD⊥平面EBCF (如圖).

          (1)當=2時,求證:BD⊥EG ;
          (2)若以F、B、C、D為頂點的三棱錐的體積記為,求的最大值;
          (3)當取得最大值時,求二面角D-BF-E的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:解答題

          如圖,已知三棱柱的側(cè)棱與底面垂直,,,分別是,的中點,點在直線上,且
          (Ⅰ)證明:無論取何值,總有;
          (Ⅱ)當取何值時,直線與平面所成的角最大?并求該角取最大值時的正切值;
          (Ⅲ)是否存在點,使得平面與平面所成的二面角為30º,若存在,試確定點的位置,若不存在,請說明理由.

          查看答案和解析>>

          同步練習冊答案