日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量=( , ﹣1),=(cosA,sinA).若 , 且αcosB+bcosA=csinC,則角A,B的大小分別為( 。
          A.,
          B.,
          C.,
          D.,

          【答案】C
          【解析】解:根據(jù)題意, , 可得=0,
          cosA﹣sinA=0,
          ∴A= ,
          又由正弦定理可得,sinAcosB+sinBcosA=sin2C,
          sinAcosB+sinBcosA=sin(A+B)=sinC=sin2C,
          C= , ∴B=
          故選C.
          【考點(diǎn)精析】通過(guò)靈活運(yùn)用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系和三角函數(shù)的積化和差公式,掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直;三角函數(shù)的積化和差公式:;即可以解答此題.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】定義在R上的函數(shù)y=f(x)是減函數(shù),且對(duì)任意的a∈R,都有f(﹣a)+f(a)=0,若x、y滿(mǎn)足不等式f(x2﹣2x)+f(2y﹣y2)≤0,則當(dāng)1≤x≤4時(shí),x﹣3y的最大值為(
          A.10
          B.8
          C.6
          D.4

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在四棱錐中,底面四邊形是矩形,平面分別是的中點(diǎn),.

          (1)求證:平面;

          (2)求二面角的大;

          (3)若,求直線與平面所成角的正弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】一兒童游樂(lè)場(chǎng)擬建造一個(gè)“蛋筒”型游樂(lè)設(shè)施,其軸截面如圖中實(shí)線所示. 是等腰梯形, 米, 的延長(zhǎng)線上, 為銳角). 圓都相切,且其半徑長(zhǎng)為米. 是垂直于的一個(gè)立柱,則當(dāng)的值設(shè)計(jì)為多少時(shí),立柱最矮?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,橢圓的右頂點(diǎn)為,左、右焦點(diǎn)分別為,過(guò)點(diǎn)

          且斜率為的直線與軸交于點(diǎn), 與橢圓交于另一個(gè)點(diǎn),且點(diǎn)軸上的射影恰好為點(diǎn)

          (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

          (Ⅱ)過(guò)點(diǎn)且斜率大于的直線與橢圓交于兩點(diǎn)(),若,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知A(3,0),B(0,3)C(cosα,sinα),O為原點(diǎn).
          (1)若 , 求tanα的值;
          (2)若 , 求sin2α的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某科研機(jī)構(gòu)研發(fā)了某種高新科技產(chǎn)品,現(xiàn)已進(jìn)入實(shí)驗(yàn)階段.已知實(shí)驗(yàn)的啟動(dòng)資金為10萬(wàn)元,從實(shí)驗(yàn)的第一天起連續(xù)實(shí)驗(yàn),第天的實(shí)驗(yàn)需投入實(shí)驗(yàn)費(fèi)用為,實(shí)驗(yàn)30天共投入實(shí)驗(yàn)費(fèi)用17700元.

          (1)求的值及平均每天耗資最少時(shí)實(shí)驗(yàn)的天數(shù);

          (2)現(xiàn)有某知名企業(yè)對(duì)該項(xiàng)實(shí)驗(yàn)進(jìn)行贊助,實(shí)驗(yàn)天共贊助.為了保證產(chǎn)品質(zhì)量,至少需進(jìn)行50天實(shí)驗(yàn),若要求在平均每天實(shí)際耗資最小時(shí)結(jié)束實(shí)驗(yàn),求的取值范圍.(實(shí)際耗資=啟動(dòng)資金+試驗(yàn)費(fèi)用-贊助費(fèi))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AA1=AC=2AB=2,且BC1⊥A1C.
          (1)求證:平面ABC1⊥平面A1ACC1;
          (2)設(shè)D是線段BB1的中點(diǎn),求三棱錐D﹣ABC1的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某校從高一年級(jí)學(xué)生中隨機(jī)抽取40名中學(xué)生,將他們的期中考試數(shù)學(xué)成績(jī)(滿(mǎn)分100分,成績(jī)均為不低于40分的整數(shù))分成六段: , ,…, ,得到如圖所示的頻率分布直方圖.

          (1)求圖中實(shí)數(shù)的值;

          (2)若該校高一年級(jí)共有640人,試估計(jì)該校高一年級(jí)期中考試數(shù)學(xué)成績(jī)不低于60分的人數(shù);

          (3)若從數(shù)學(xué)成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段內(nèi)的學(xué)生中隨機(jī)選取2名學(xué)生,求這2名學(xué)生的數(shù)學(xué)成績(jī)之差的絕對(duì)值不大于10的概率.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案