【題目】在平面直角坐標(biāo)系中曲線
的參數(shù)方程為
(
為參數(shù)),以
為極點,
軸的正半軸為極軸,建立極坐標(biāo)系,直線
的極坐標(biāo)方程為
.
(1)求曲線的普通方程以及直線
的直角坐標(biāo)方程;
(2)將曲線向左平移2個單位,再將曲線
上的所有點的橫坐標(biāo)縮短為原來的
,得到曲線
,求曲線
上的點到直線
的距離的最小值.
【答案】(1);
; (2)
.
【解析】
(1)曲線的參數(shù)方程化簡消參后得到普通方程,利用
,對直線
的極坐標(biāo)方程進(jìn)行化簡,得到
的直角坐標(biāo)方程;
(2)根據(jù)變換規(guī)則,得到變換后的曲線的方程,寫出其參數(shù)方程,從而得到曲線
上任一點的坐標(biāo),利用點到直線的距離公式,結(jié)合正弦型函數(shù)的值域,得到最小值.
(1)曲線的參數(shù)方程為
(
為參數(shù))
所以,兩式平方后相加得
,
即曲線的普通方程為:
.
直線的極坐標(biāo)方程為
,
即
,
因為,
所以直線的直角坐標(biāo)方程為:
(2)曲線:
向左平移2個單位,
得到,
再將曲線上的所有點的橫坐標(biāo)縮短為原來的
得到,
即曲線;
所以曲線的參數(shù)方程為
(
為參數(shù)),
設(shè)曲線上任一點
,
則點到直線
的距離為:
則(其中
),
當(dāng)時,
取最小值,為
所以點到直線
的距離的最小值為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,A的坐標(biāo)為(2,0),B是第一象限內(nèi)的一點,以C為圓心的圓經(jīng)過OAB三點,且圓C在點A,B處的切線相交于P,若P的坐標(biāo)為(4,2),則直線PB的方程為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:若函數(shù)的導(dǎo)函數(shù)
是奇函數(shù)
,則稱函數(shù)
是“雙奇函數(shù)”.函數(shù)
.
(1)若函數(shù)是“雙奇函數(shù)”,求實數(shù)
的值;
(2)若時,討論函數(shù)
的極值點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了解高一新生的體能情況,在入學(xué)后不久,組織了一次體能測試,按成績分為優(yōu)秀、良好、一般、較差四個檔次.現(xiàn)隨機(jī)抽取120名學(xué)生的成績,其條形圖如下:
(1)將優(yōu)秀、良好、一般歸為合格,較差歸為不合格,試根據(jù)條形圖完成下面的2×2列聯(lián)表,并判斷能否在犯錯誤的概率不超過0.01的前提下認(rèn)為學(xué)生的成績與性別有關(guān).
合格 | 不合格 | 合計 | |
男生 | |||
女生 | |||
合計 |
(2)學(xué)校為了解學(xué)生以前參加課外活動的情況,利用分層抽樣的方法從120名學(xué)生中抽取24名學(xué)生參加一個座談會.
①座談會上抽取2名學(xué)生匯報以前參加課外活動的情況,求恰好抽到測試成績一個優(yōu)秀與一個較差的學(xué)生的概率;
②為全面提高學(xué)生的體能,學(xué)校專門安排專職教師對全校測試成績較差的學(xué)生在課外活動時進(jìn)行專項訓(xùn)練,通過一段時間的訓(xùn)陳后,測試合格率達(dá)到了.若某班有4名學(xué)生參加這個專項訓(xùn)陳,求訓(xùn)練后測試合格人數(shù)ξ的分布列與數(shù)學(xué)期望.
附:K2,其中n=a+b+c+d
P(K2≥k0) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為
,點
是橢圓
上的點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知斜率存在又不經(jīng)過原點的直線與圓
相切,且與橢圓
交于
兩點.探究:在橢圓
上是否存在點
,使得
,若存在,請求出實數(shù)
的取值范圍,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,射線與圓
交于點
,橢圓
的方程為
,以極點為原點,極軸為
軸正半軸建立平面直角坐標(biāo)系
(1)求點的直角坐標(biāo)和橢圓
的參數(shù)方程;
(2)若為橢圓
的下頂點,
為橢圓
上任意一點,求
的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種植物感染病毒極易導(dǎo)致死亡,某生物研究所為此推出了一種抗
病毒的制劑,現(xiàn)對
株感染了
病毒的該植株樣本進(jìn)行噴霧試驗測試藥效.測試結(jié)果分“植株死亡”和“植株存活”兩個結(jié)果進(jìn)行統(tǒng)計;并對植株吸收制劑的量(單位:
)進(jìn)行統(tǒng)計規(guī)定:植株吸收在
(包括
)以上為“足量”,否則為“不足量”.現(xiàn)對該
株植株樣本進(jìn)行統(tǒng)計,其中“植株存活”的
株,對制劑吸收量統(tǒng)計得下表.已知“植株存活”但“制劑吸收不足量”的植株共
株.
編號 | ||||||||||||||||||||
吸收量 |
(1)完成以下列聯(lián)表,并判斷是否可以在犯錯誤概率不超過
的前提下,認(rèn)為“植株的存活”與“制劑吸收足量”有關(guān)?
吸收足量 | 吸收不足量 | 合計 | |
植株存活 | |||
植株死亡 | |||
合計 |
(2)若在該樣本“制劑吸收不足量”的植株中隨機(jī)抽取株,求這
株中恰有
株“植株存活”的概率.
參考數(shù)據(jù):
,其中
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com