日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在等腰梯形ABCD中,,,EAD中點,點O,F分別為BEDE的中點,將沿BE折起到的位置,使得平面平面BCDE(如圖).

          1)求證:

          2)求直線與平面所成角的正弦值;

          3)側(cè)棱上是否存在點P,使得平面?若存在,求出的值;若不存在,請說明理由

          【答案】1)證明見解析;(2;(3.

          【解析】

          1)要證,只需證明平面BCDE即可;

          2)以O為原點,OBOC,所在的直線分別為x、y、z軸建立空間直角坐標(biāo)系,確定出點坐標(biāo),求出平面的法向量坐標(biāo),即可求解;

          3)假設(shè)滿足條件的點P存在,設(shè),,由四邊形BCDE為菱形,且,結(jié)合(1)可知,平面,得到為平面的一個法向量,據(jù)此可求解的值.

          1)如圖1,在等腰梯形ABCD中,由,,

          中點,所以為等邊三角形.

          如圖2,因為OBE的中點,所以

          又因為平面平面BCDE,且平面平面,

          所以平面BCDE,所以.

          2)連結(jié)OC,由已知得,又OBE的中點,

          所以,由(1)知平面BCDE,

          所以,,,兩兩垂直,

          O為坐標(biāo)原點,OBOC,所在的直線分別為x,y,z軸,

          建立空間直角坐標(biāo)系(如圖),

          ,

          ,

          設(shè)平面的法向量為

          ,即,令,則,

          平面的一個法向量為,

          設(shè)與平面所成角為,

          所以直線與平面所成角的正弦值為;

          (3)假設(shè)側(cè)棱上存在點P,使得平面

          設(shè),

          ,

          由四邊形BCDE為菱形,,

          分別為中點,,

          由(1)得平面,

          是平面的一個法向量,平面,

          所以滿足條件的點存在,且

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知)是R上的奇函數(shù),且.

          1)求的解析式;

          2)若關(guān)于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;

          3)設(shè),記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),若在定義域內(nèi)存在,使得成立,則稱為函數(shù)的局部對稱點.

          1)若,證明:函數(shù)必有局部對稱點;

          2)若函數(shù)在定義域內(nèi)有局部對稱點,求實數(shù)的取值范圍;

          3)若函數(shù)上有局部對稱點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如表:

          年齡(歲)

          支持“延遲退休年齡政策”人數(shù)

          15

          5

          15

          28

          17

          (I)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;

          年齡低于45歲的人數(shù)

          年齡不低于45歲的人數(shù)

          總計

          支持

          不支持

          總計

          (II)通過計算判斷是否有的把握認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度有差異.

          0.100

          0.050

          0.010

          0.001

          2.706

          3.841

          6.635

          10.828

          參考公式:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列有關(guān)命題的說法正確的是( )

          A. ,使得成立.

          B. 命題:任意,都有,則:存在,使得

          C. 命題“若,則”的逆命題為真命題.

          D. 若數(shù)列是等比數(shù)列,的必要不充分條件.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】遞增的等差數(shù)列的前項和為.是方程的兩個實數(shù)根.

          1)求數(shù)列的通項公式;

          2)當(dāng)為多少時,取最小值,并求其最小值;

          3)求.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某手機(jī)賣場對市民進(jìn)行國產(chǎn)手機(jī)認(rèn)可度的調(diào)查,隨機(jī)抽取名市民,按年齡(單位:歲)進(jìn)行統(tǒng)計和頻數(shù)分布表和頻率分布直線圖如下:

          分組(歲)

          頻數(shù)

          合計

          (1)求頻率分布表中的值,并補(bǔ)全頻率分布直方圖;

          (2)在抽取的這名市民中,按年齡進(jìn)行分層抽樣,抽取人參加國產(chǎn)手機(jī)用戶體驗問卷調(diào)查,現(xiàn)從這人中隨機(jī)選取人各贈送精美禮品一份,設(shè)這名市民中年齡在內(nèi)的人數(shù),求的分布列及數(shù)學(xué)期望.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】一個口袋中有個白球和個紅球(,且),每次從袋中摸出兩個球(每次摸球后把這兩個球放回袋中),若摸出的兩個球顏色相同為中獎,否則為不中獎.

          (1)試用含的代數(shù)式表示一次摸球中獎的概率

          (2)若,求三次摸球恰有一次中獎的概率;

          (3)記三次摸球恰有一次中獎的概率為,當(dāng)為何值時,取最大.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】 如圖,在四棱錐中,底面為平行四邊形,為等邊三角形,平面平面,,,

          (Ⅰ)設(shè)分別為的中點,求證:平面;

          (Ⅱ)求證:平面;

          (Ⅲ)求直線與平面所成角的正弦值.

          查看答案和解析>>

          同步練習(xí)冊答案