日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】電視傳媒公司為了解某地區(qū)觀眾對某體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名,下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

          將日均收看該體育節(jié)目時間不低于40分鐘的觀眾稱為體育迷”.

          (1)根據(jù)已知條件完成下面的22列聯(lián)表,并據(jù)此資料你是否認(rèn)為體育迷與性別有關(guān)?

          非體育迷

          體育迷

          合計

          10

          55

          合計

          (2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量電視觀眾中,采用隨機(jī)抽樣方法每次抽取1名觀眾,抽取3次,記被抽取的3名觀眾中的體育迷人數(shù)為X.若每次抽取的結(jié)果是相互獨立的,求X的分布列,期望E(X)和方差D(X).

          附:.

          P(K2k)

          0.05

          0.01

          k

          3.841

          6.635

          【答案】(1)答案見解析;(2)答案見解析.

          【解析】試題分析:(1)根據(jù)所給的頻率分布直方圖得出數(shù)據(jù)列出列聯(lián)表,再代入計算公式,求出的值,即可比較得到結(jié)論;

          (2)由題意,可得從觀眾中抽取到一名“體育迷”的概率為,由于,從而給出分布列,用公式即可求得數(shù)學(xué)期望

          試題解析:

          (1)由頻率分布直方圖可知,在抽取的100人中,體育迷25人,從而22列聯(lián)表如下:

          非體育迷

          體育迷

          合計

          30

          15

          45

          45

          10

          55

          合計

          75

          25

          100

          22列聯(lián)表中的數(shù)據(jù)代入公式計算,得

          K2===≈3.030.

          因為3.030<3.841,所以我們沒有充分理由認(rèn)為體育迷與性別有關(guān).

          (2)由頻率分布直方圖知抽到體育迷的頻率為0.25,將頻率視為概率,即從觀眾中抽取一名體育迷的概率.由題意知X~B(3,),從而X的分布列為

          X

          0

          1

          2

          3

          P

          E(X)=np=3=.D(X)=np(1-p)=3

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知點P0,-2),橢圓E 的離心率為,F是橢圓E的右焦點,直線PF的斜率為2,O為坐標(biāo)原點.

          1)求橢圓E的方程;

          2)直線l被圓Ox2+y2=3截得的弦長為3,且與橢圓E交于A、B兩點,求△AOB面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)函數(shù)f(x)xax2b·ln x,曲線yf(x)P(1,0),且在P點處的切線斜率為2.

          (1)ab的值;

          (2)證明:f(x)≤2x2.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求fx)的最小值;

          (2)若方程x2+1=-x3+2x2+mxx>0)有兩個正根,求實數(shù)m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在以A,B,C,D,E,F(xiàn)為頂點的五面體中,面ABEF為正方形,AF=2FD,∠AFD=90°,且二面角D﹣AF﹣E與二面角C﹣BE﹣F都是60°.

          (1)證明平面ABEF⊥平面EFDC;
          (2)求二面角E﹣BC﹣A的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C1的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2sin θ.

          (1)C1的參數(shù)方程化為極坐標(biāo)方程;

          (2)C1C2交點的極坐標(biāo)(ρ≥0,0≤θ<2π)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】中,角對的邊分別為,已知.

          )若,求的取值范圍;

          )若,求面積的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖所示,四棱錐P-ABCD中,ABCD為正方形,分別是線段的中點.

          求證:(1)BC∥平面EFG;

          (2)平面EFG⊥平面PAB

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)的定義域為R.當(dāng)x<0時,f(x)=x3﹣1;當(dāng)﹣1≤x≤1時,f(﹣x)=﹣f(x);當(dāng)x> 時,f(x+ )=f(x﹣ ).則f(6)=(  )
          A.﹣2
          B.﹣1
          C.0
          D.2

          查看答案和解析>>

          同步練習(xí)冊答案