【題目】已知橢圓的左焦點在拋物線
的準線上,且橢圓的短軸長為2,
分別為橢圓的左,右焦點,
分別為橢圓的左,右頂點,設點
在第一象限,且
軸,連接
交橢圓于點
,直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形
的面積,求
的值;
(Ⅲ)設點為
的中點,射線
(
為原點)與橢圓交于點
,滿足
,求
的值.
【答案】(Ⅰ)(Ⅱ)
(Ⅲ)
【解析】
(I)根據(jù)拋物線的準線求得,根據(jù)短軸長求得
,由此求得
,進而求得橢圓方程.(II)設出直線
的方程,聯(lián)立直線
的方程和橢圓方程,求得
點的坐標,令
求得
點坐標.利用三角形的面積公式計算出
和
的面積,根據(jù)題目已知條件,這兩個三角形的面積相等,由此列方程,解方程求得
的值.(III)根據(jù)(II)求得
點坐標,由此求得
的斜率,設
所在直線方程為
,代入橢圓方程,求得
點坐標,計算出
到直線
的距離
,
的長度,化簡
得到
,利用
列方程,解方程求得
的值.
解:(Ⅰ)由已知得,,故
,橢圓方程為:
,
(Ⅱ)設直線方程為
∴
∴∴
∴,令
∴
∴
∴
∵∴
(Ⅲ)由(II)和中點坐標公式,得,設
所在直線方程為
,則
,∴
∴
,
到直線
的距離:
,
,
∴
即,
,化簡得
,
∵,∴
.
科目:高中數(shù)學 來源: 題型:
【題目】截至2019年,由新華社《瞭望東方周刊》與瞭望智庫共同主辦的"中國最具幸福感城市"調(diào)查推選活動已連續(xù)成功舉辦12年,累計推選出60余座幸福城市,全國約9億多人次參與調(diào)查,使"城市幸福感"概念深入人心.為了便于對某城市的"城市幸福感"指數(shù)進行研究,現(xiàn)從該市抽取若干人進行調(diào)查,繪制成如下不完整的2×2列聯(lián)表(數(shù)據(jù)單位:人).
男 | 女 | 總計 | |
非常幸福 | 11 | 15 | |
比較幸福 | 9 | ||
總計 | 30 |
(1)將列聯(lián)表補充完整,并據(jù)此判斷是否有90%的把握認為城市幸福感指數(shù)與性別有關;
(2)若感覺"非常幸福"記2分,"比較幸福"記1分,從上表男性中隨機抽取3人,記3人得分之和為,求
的分布列,并根據(jù)分布列求
的概率
附:,其中
.
| 0. 10 | 0. 05 | 0. 010 | 0.001 |
2.706 | 3.841 | 6. 635 | 10. 828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設命題:實數(shù)
滿足不等式
;命題
:函數(shù)
有極值點.
(1)若為真命題,
為假命題,求實數(shù)
的取值范圍;
(2)若為真命題,并記為
,且
,若
是
的必要不充分條件,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
.
(1)討論的單調(diào)性;
(2)定義:對于函數(shù),若存在
,使
成立,則稱
為函數(shù)
的不動點.如果函數(shù)
存在不動點,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】由團中央學校部、全國學聯(lián)秘書處、中國青年報社共同舉辦的2018年度全國“最美中學生“尋訪活動結果出爐啦,此項活動于2018年6月啟動,面向全國中學在校學生,通過投票方式尋訪一批在熱愛祖國、勤奮學習、熱心助人、見義勇為等方面表現(xiàn)突出、自覺樹立和踐行社會主義核心價值觀的“最美中學生”.現(xiàn)隨機抽取了30名學生的票數(shù),線成如圖所示的莖葉圖,若規(guī)定票數(shù)在65票以上(包括65票)定義為風華組.票數(shù)在65票以下(不包括65票)的學生定義為青春組.
(Ⅰ)在這30名學生中,青春組學生中有男生7人,風華組學生中有女生12人,試問有沒有的把握認為票數(shù)分在青春組或風華組與性別有關;
(Ⅱ)如果用分層抽樣的方法從青春組和風華組中抽取5人,再從這5人中隨機抽取2人,那么至少有1人在青春組的概率是多少?
(Ⅲ)用樣本估計總體,把頻率作為概率,若從該地區(qū)所有的中學(人數(shù)很多)中隨機選取4人,用表示所選4人中青春組的人數(shù),試寫出
的分布列,并求出
的數(shù)學期望.
附:;其中
獨立性檢驗臨界表:
0.100 | 0.050 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線x2=2py(p>0)的焦點為F(0,1),過F的兩條動直線AB,CD與拋物線交出A、B、C、D四點,直線AB,CD的斜率存在且分別是k1(k1>0),k2.
(Ⅰ)若直線BD過點(0,3),求直線AC與y軸的交點坐標
(Ⅱ)若k1﹣k2=2,求四邊形ACBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù).
(1)若不等式對任意的
,
都成立,求實數(shù)m的取值范圍;
(2)關于x的方程在
上有且只有一個解,求實數(shù)k的取值范圍.
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列有關命題的說法正確的是___(請?zhí)顚懰姓_的命題序號).
①命題“若,則
”的否命題為:“若
,則
”;
②命題“若,則
”的逆否命題為真命題;
③條件,條件
,則
是
的充分不必要條件;
④已知時,
,若
是銳角三角形,則
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com