【題目】設(shè)命題:實數(shù)
滿足不等式
;命題
:函數(shù)
有極值點.
(1)若為真命題,
為假命題,求實數(shù)
的取值范圍;
(2)若為真命題,并記為
,且
,若
是
的必要不充分條件,求實數(shù)
的取值范圍.
【答案】(1);(2)
【解析】
(1)先求得命題為真命題時,實數(shù)
的取值范圍,在結(jié)合題設(shè)條件,得出
和
只有一個命題是真命題,分類討論,即可求解;
(2)由是真命題,求得
,再由命題
為真命題,求得
或
,
所以,根據(jù)
是
的必要不充分條件,列出不等式組,即可求解.
(1)由題意,若為真命題,則
,解得
,即
若為真命題,即函數(shù)
有極值點,所以
有解,
所以,解得
或
,即
因為為真命題,
為假命題,所以
和
只有一個命題是真命題,
若真
假,則有
且
,解得
若假
真,則有
,解得
,
綜上,實數(shù)的取值范圍是
.
(2)因為是真命題,所以
,解得
,
又因為,所以
,
所以或
,即
或
,
所以,
又因為是
的必要不充分條件, 所以
,解得
,
所以實數(shù)的取值范圍為
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲袋中裝有3個白球和5個黑球,乙袋中裝有4個白球和6個黑球,現(xiàn)從甲袋中隨機取出一個球放入乙袋中,充分混合后,再從乙袋中隨機取出一個球放回甲袋中,則甲袋中白球沒有減少的概率為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年2月13日《煙臺市全民閱讀促進條例》全文發(fā)布,旨在保障全民閱讀權(quán)利,培養(yǎng)全民閱讀習(xí)慣,提高全民閱讀能力,推動文明城市和文化強市建設(shè).某高校為了解條例發(fā)布以來全校學(xué)生的閱讀情況,隨機調(diào)查了200名學(xué)生每周閱讀時間(單位:小時)并繪制如圖所示的頻率分布直方圖.
(1)求這200名學(xué)生每周閱讀時間的樣本平均數(shù)和樣本方差
(同一組中的數(shù)據(jù)用該組區(qū)間的中間值代表);
(2)由直方圖可以認為,目前該校學(xué)生每周的閱讀時間服從正態(tài)分布
,其中
近似為樣本平均數(shù)
,
近似為樣本方差
.
(i)一般正態(tài)分布的概率都可以轉(zhuǎn)化為標(biāo)準(zhǔn)正態(tài)分布的概率進行計算:若,令
,則
,且
.利用直方圖得到的正態(tài)分布,求
.
(ii)從該高校的學(xué)生中隨機抽取20名,記表示這20名學(xué)生中每周閱讀時間超過10小時的人數(shù),求
(結(jié)果精確到0.0001)以及
的數(shù)學(xué)期望.
參考數(shù)據(jù):,
.若
,則
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由甲、乙、丙三個人組成的團隊參加某項闖關(guān)游戲,第一關(guān)解密碼鎖,3個人依次進行,每人必須在1分鐘內(nèi)完成,否則派下一個人.3個人中只要有一人能解開密碼鎖,則該團隊進入下一關(guān),否則淘汰出局.根據(jù)以往100次的測試,分別獲得甲、乙解開密碼鎖所需時間的頻率分布直方圖.
(1)若甲解開密碼鎖所需時間的中位數(shù)為47,求、
的值,并分別求出甲、乙在1分鐘內(nèi)解開密碼鎖的頻率;
(2)若以解開密碼鎖所需時間位于各區(qū)間的頻率代替解開密碼鎖所需時間位于該區(qū)間的概率,并且丙在1分鐘內(nèi)解開密碼鎖的概率為0.5,各人是否解開密碼鎖相互獨立.
①按乙丙甲的先后順序和按丙乙甲的先后順序哪一種可使派出人員數(shù)目的數(shù)學(xué)期望更小.
②試猜想:該團隊以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的數(shù)學(xué)期望達到最小,不需要說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若是公差不為0的等差數(shù)列
的前
項和,且
成等比數(shù)列,
.
(1)求數(shù)列的通項公式;
(2)設(shè)是數(shù)列
的前
項和,求使得
對所有
都成立的最小正整數(shù)
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點在拋物線
的準(zhǔn)線上,且橢圓的短軸長為2,
分別為橢圓的左,右焦點,
分別為橢圓的左,右頂點,設(shè)點
在第一象限,且
軸,連接
交橢圓于點
,直線
的斜率為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若三角形的面積等于四邊形
的面積,求
的值;
(Ⅲ)設(shè)點為
的中點,射線
(
為原點)與橢圓交于點
,滿足
,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足
.
(1)若數(shù)列的首項為
,其中
,且
,
,
構(gòu)成公比小于0的等比數(shù)列,求
的值;
(2)若是公差為d(d>0)的等差數(shù)列
的前n項和,求
的值;
(3)若,
,且數(shù)列
單調(diào)遞增,數(shù)列
單調(diào)遞減,求數(shù)列
的通項公式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com