日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè)函數(shù),

          (1) ,求函數(shù)的單調(diào)區(qū)間;

          (2) 若函數(shù)有兩個零點,求實數(shù)a的取值范圍.

          【答案】1)函數(shù)的增區(qū)間為(01),減區(qū)間為;(2.

          【解析】

          1)求出函數(shù)的導(dǎo)數(shù),判斷正負(fù)求出函數(shù)的單調(diào)區(qū)間即可;

          2)求, 討論的單調(diào)性進而確定函數(shù)的零點個數(shù)即可求解

          1fx)的定義域為(0,+∞),

          ,,

          當(dāng) 則函數(shù)的增區(qū)間為(01),減區(qū)間為;

          2,

          當(dāng) ,至多有一個零點,不合題意;

          當(dāng),當(dāng),

          當(dāng)時, 單調(diào)遞增,在 上單調(diào)遞減,則 ,又 ,則

          則在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,又,則若函數(shù)有兩個零點,只需,綜上 ;

          當(dāng)時, 單調(diào)遞增,在 上單調(diào)遞減,則 ,又 ,則

          則在單調(diào)遞增,在單調(diào)遞減,在單調(diào)遞增,又,則函數(shù)必有兩個零點,故

          ③當(dāng),即時,,,易得的極大值也就是最大值為,則,由,函數(shù)有唯一零點1,不合題意

          綜上實數(shù)a的取值范圍.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,等腰梯形中,,,,中點,以為折痕把折起,使點到達點的位置(平面).

          (Ⅰ)證明:;

          (Ⅱ)若直線與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】數(shù)列滿足:對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列上有界(有上界),并稱是它的一個上界,對一切,有,其中是與無關(guān)的常數(shù),稱數(shù)列下有界(有下界),并稱是它的一個下界.一個數(shù)列既有上界又有下界,則稱為有界數(shù)列,常值數(shù)列是一個特殊的有界數(shù)列.設(shè),數(shù)列滿足,.

          1)若數(shù)列為常數(shù)列,試求實數(shù)、滿足的等式關(guān)系,并求出實數(shù)的取值范圍;

          2)下面四個選項,對一切實數(shù),恒正確的是.(寫出所有正確選項,不需要證明其正確,但需要簡單說明一下為什么不選余下幾個)

          A. 當(dāng)時, B. 當(dāng)時,

          C. 當(dāng)時, D. 當(dāng)時,

          3)若,,且數(shù)列是有界數(shù)列,求的值及的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)的極值;

          (2)設(shè)函數(shù).若存在區(qū)間,使得函數(shù)上的值域為,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】設(shè)雙曲線 的左右焦點分別為,過的直線分別交雙曲線左右兩支于點M,N.若以MN為直徑的圓經(jīng)過點,則雙曲線的離心率為(

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的前項積為滿足. 數(shù)列的首項為,且滿足.

          (1)求數(shù)列,的通項公式;

          (2)記集合,若集合的元素個數(shù)為,求實數(shù)的取值范圍;

          (3)是否存在正整數(shù)使得成立?如果存在,請寫出滿足的條件,如果不存在,請說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在直三棱柱中,,,點E,F分別在,,且,.設(shè).

          1)當(dāng)時,求異面直線所成角的大小;

          2)當(dāng)平面平面時,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】將向量=(, ), =( ),…=(,)組成的系列稱為向量列{},并定義向量列{}的前項和.如果一個向量列從第二項起,每一項與前一項的差都等于同一個向量,那么稱這樣的向量列為等差向量列。若向量列{}是等差向量列,那么下述四個向量中,與一定平行的向量是 ( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某烘焙店加工一個成本為60元的蛋糕,然后以每個120元的價格出售,如果當(dāng)天賣不完,剩下的這種蛋糕作餐廚垃圾處理.

          1)若烘焙店一天加工16個這種蛋糕,求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量(單位:個,)的函數(shù)解析式;

          2)為了解該種蛋糕的市場需求情況與性別是否有關(guān),隨機統(tǒng)計了100人的購買情況,得如下列聯(lián)表:

          合計

          購買

          15

          35

          50

          不購買

          6

          44

          50

          合計

          21

          79

          100

          問:能否有的把握認(rèn)為是否購買蛋糕與性別有關(guān)?

          附:

          0.100

          0.050

          0.025

          0.010

          2.706

          3.841

          5.024

          6.635

          查看答案和解析>>

          同步練習(xí)冊答案