【題目】已知函數(shù)的定義域為
,滿足
.
(1)若,求
的值;
(2)若時,
.
①求時
的表達式;
②若對任意,都有
,求
的取值范圍.
【答案】(1)0;(2)①;②
【解析】
(1)根據(jù)題意,將代入表達式根據(jù)等式即可求解.
(2)利用,當
時,
,代入表達式即可求解.
(3)根據(jù)題意可得在每一段區(qū)間上,函數(shù)都有最大值點
,從而可得當
時,
恒成立;當
時,
可解得兩個根
或
,數(shù)形結(jié)合即可求解.
(1)由,則
解得:
(2)函數(shù)的定義域為
,滿足
,
且當時,
,
又當時,
,
則有,
當時,
則有,
當時,
,
則有.
(3)如圖所示:
函數(shù)在每一段區(qū)間
上,
圖像為以為對稱軸的拋物線的一部分,
在每一段區(qū)間上,
函數(shù)都有最大值點,
當時,即
時,
恒成立;
當時,
解得或
,將這兩個值標注在圖中,
對任意,都有
,必有
,
即實數(shù)的取值范圍為
.
科目:高中數(shù)學 來源: 題型:
【題目】已知某海濱浴場海浪的高度(米
是時刻
,單位:時)的函數(shù),記作:
,下表是某日各時刻的浪高數(shù)據(jù):
| 0 | 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 |
| 1.5 | 1.0 | 0.5 | 1.0 | 1.5 | 1.0 | 0.5 | 1.0 | 1.5 |
經(jīng)長期觀測,的曲線可近似地看成是函數(shù)
,
,
的圖象.
(的最小正周期
,振幅
及函數(shù)表達式;
(2)依據(jù)規(guī)定,當海浪高度高于1米時才對沖浪愛好者開放,請依據(jù)(1)的結(jié)論,判斷一天內(nèi)的至
之間,那個時間段不對沖浪愛好者開放?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:的離心率為
,經(jīng)過點
過點
的直線l與橢圓C相交于A,B兩點,且與橢圓C的左準線交于點N.
求橢圓C的標準方程;
當
時,求直線l的方程;
設(shè)
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知PA⊥平面ABCD,且四邊形ABCD為矩形,M、N分別是AB、PC的中點.
(1)求證:MN⊥CD;
(2)若∠PDA=45°,求證:MN⊥平面PCD.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校有、
、
、
四件作品參加航模類作品比賽.已知這四件作品中恰有兩件獲獎,在結(jié)果揭曉前,甲、乙、丙、丁四位同學對這四件參賽作品的獲獎情況預(yù)測如下.
甲說:“、
同時獲獎.”
乙說:“、
不可能同時獲獎.”
丙說:“獲獎.”
丁說:“、
至少一件獲獎”
如果以上四位同學中有且只有兩位同學的預(yù)測是正確的,則獲獎的作品是( )
A. 作品與作品
B. 作品
與作品
C. 作品
與作品
D. 作品
與作品
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術(shù)》中對一些特殊的幾何體有特定的稱謂,例如:將底面為直角三角形的直三棱柱稱為塹堵.將一塹堵沿其一頂點與相對的棱刨開,得到一個陽馬(底面是長方形,且有一條側(cè)棱與底面垂直的四棱錐)和一個鱉臑(四個面均為直角三角形的四面體).在如圖所示的塹堵中,
,
,
,則陽馬
的外接球的表面積是( )
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè),
是雙曲線C:
的左,右焦點,O是坐標原點
過
作C的一條漸近線的垂線,垂足為P,若
,則C的離心率為
A. B. 2 C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足:對任意實數(shù)x,都有f(x)≥x,且當x∈(1,3)時,有f(x)≤ (x+2)2成立.
(1)證明:f(2)=2;
(2)若f(-2)=0,求f(x)的表達式;
(3)設(shè)g(x)=f(x)-x,x∈[0,+∞),若g(x)圖象上的點都位于直線y=
的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位決定投資元建一倉庫(長方體狀),高度恒定,它的后墻利用舊墻不花錢,正面用鐵柵,每
長造價
元,兩側(cè)墻砌磚,每
長造價
元,
(1)求該倉庫面積的最大值;
(2)若為了使倉庫防雨,需要為倉庫做屋頂.頂部每造價
元,求倉庫面積
的最大值,并求出此時正面鐵柵應(yīng)設(shè)計為多長?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com