日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 以橢圓
          x2
          16
          +
          y2
          4
          =1
          內(nèi)的點(diǎn)M(1,1)為中點(diǎn)的弦所在直線方程為_(kāi)_____.
          設(shè)點(diǎn)M(1,1)為中點(diǎn)的弦所在直線與橢圓相交于點(diǎn)A(x1,y1),B(x2,y2).
          x21
          16
          +
          y21
          4
          =1
          x22
          16
          +
          y22
          4
          =1
          ,
          相減得
          (x1+y1)(x1-y1)
          16
          +
          (x2+y2)(x2-y2)
          4
          =0,
          1=
          x1+x2
          2
          ,1=
          y1+y2
          2
          ,kAB=
          y1-y2
          x1-x2
          ..
          2
          16
          +
          2kAB
          4
          =0
          ,解得kAB=-
          1
          4

          故所求的直線方程為y-1=-
          1
          4
          (x-1)
          ,化為x+4y-5=0.
          故答案為x+4y-5=0.
          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知雙曲線C的漸近線為y=±
          3
          3
          x且過(guò)點(diǎn)M(
          6
          ,1).
          (1)求雙曲線C的方程;
          (2)若直線l:y=kx+m,(m≠0)與雙曲線C相交于A,B兩點(diǎn),D(0,-1)且有|AD|=|BD|,試求m的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知平面內(nèi)一點(diǎn)P與兩個(gè)定點(diǎn)F1(-
          3
          ,0)
          F2(
          3
          ,0)
          的距離的差的絕對(duì)值為2.
          (Ⅰ)求點(diǎn)P的軌跡方程C;
          (Ⅱ)設(shè)過(guò)(0,-2)的直線l與曲線C交于A,B兩點(diǎn),且OA⊥OB(O為坐標(biāo)原點(diǎn)),求直線l的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

          橢圓
          x2
          45
          +
          y2
          20
          =1
          的焦點(diǎn)分別為F1和F2,過(guò)原點(diǎn)O作直線與橢圓相交于A,B兩點(diǎn).若△ABF2的面積是20,則直線AB的方程是______.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,直線y=kx+b與橢圓
          x2
          4
          +y2
          =1交于A,B兩點(diǎn),記△AOB的面積為S.
          (I)求在k=0,0<b<1的條件下,S的最大值;
          (Ⅱ)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          已知橢圓C:
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的離心率為
          3
          3
          ,直線l:y=x+2與圓x2+y2=b2相切.
          (1)求橢圓C的方程;
          (2)設(shè)直線l與橢圓C的交點(diǎn)為A,B,求弦長(zhǎng)|AB|.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,F(xiàn)1,F(xiàn)2是橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)上的焦點(diǎn),P為橢圓上的點(diǎn),PF1⊥OX軸,且OP和橢圓的一條長(zhǎng)軸頂點(diǎn)A和短軸頂點(diǎn)B的連線AB平行.
          (1)求橢圓的離心率e
          (2)若Q是橢圓上任意一點(diǎn),證明∠F1QF2
          π
          2

          (3)過(guò)F1與OP垂直的直線交橢圓于M,N,若△MF2N的面積為20
          3
          ,求橢圓方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          設(shè)橢圓
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0)的左、右頂點(diǎn)分別為A(-
          2
          ,0)、B(
          2
          ,0),離心率e=
          2
          2
          .過(guò)該橢圓上任一點(diǎn)P作PQ⊥x軸,垂足為Q,點(diǎn)C在QP的延長(zhǎng)線上,且|PC|=(
          2
          -1)|PQ|.
          (1)求橢圓的方程;
          (2)求動(dòng)點(diǎn)C的軌跡E的方程;
          (3)設(shè)直線MN過(guò)橢圓的右焦點(diǎn)與橢圓相交于M、N兩點(diǎn),且|MN|=
          8
          2
          7
          ,求直線MN的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

          如圖,已知圓C1的方程為(x-2)2+(y-1)2=
          20
          3
          ,橢圓C2的方程為
          x2
          a2
          +
          y2
          b2
          =1
          (a>b>0),C2的離心率為
          2
          2
          ,如果C1與C2相交于A、B兩點(diǎn),且線段AB恰為圓C1的直徑,求直線AB的方程和橢圓C2的方程.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案