日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】如圖,在四棱錐PABCD中,PB⊥平面ABCD,ABBC,ADBCAD2BC2,ABBCPB,點(diǎn)E為棱PD的中點(diǎn).

          1)求證:CE∥平面PAB;

          2)求證:AD⊥平面PAB;

          3)求二面角EACD的余弦值.

          【答案】1)證明見解析(2)證明見解析(3

          【解析】

          1)取PA中點(diǎn)F,連接EF,BF,因?yàn)?/span>EPD中點(diǎn),FPA中點(diǎn),證明四邊形BCEF為平行四邊形,得到CEBF,然后證明CE∥平面PAB.

          2)證明PBAD,ADAB,然后證明AD⊥平面PAB.

          3)以B為原點(diǎn),如圖建立空間直角坐標(biāo)系Bxyz,求出平面ACD的一個(gè)法向量,平面ACE的一個(gè)法向量,結(jié)合二面角EACD為銳角,通過空間向量的數(shù)量積求解二面角EACD的余弦值即可.

          證明:(1)取PA中點(diǎn)F,連接EF,BF,因?yàn)?/span>EPD中點(diǎn),FPA中點(diǎn),

          所以EFAD,且

          又因?yàn)?/span>BCAD,且

          所以EFBC,且EFBC

          所以四邊形BCEF為平行四邊形,

          所以CEBF,

          因?yàn)?/span>CE平面PAB,BF平面PAB

          所以CE∥平面PAB.

          2)因?yàn)?/span>PB⊥平面ABCDAD平面ABCD

          所以PBAD

          又因?yàn)?/span>ABBC,ADBC

          所以ADAB,

          ABPBB,AB、PB平面PAB

          所以AD⊥平面PAB.

          3)因?yàn)?/span>PB⊥平面ABCDAB、BC平面ABCD

          所以PBAB,PBBC,又ABBC,

          B為原點(diǎn),如圖建立空間直角坐標(biāo)系Bxyz,

          所以

          已知平面ACD的一個(gè)法向量;

          設(shè)平面ACE的法向量,

          ,即,

          x1,則y1z=﹣1;

          所以平面ACE的一個(gè)法向量為

          所以

          由圖可知二面角EACD為銳角,

          所以二面角EACD的余弦值為.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某購物網(wǎng)站開展一種商品的預(yù)約購買,規(guī)定每個(gè)手機(jī)號(hào)只能預(yù)約一次,預(yù)約后通過搖號(hào)的方式?jīng)Q定能否成功購買到該商品.規(guī)則如下:(ⅰ)搖號(hào)的初始中簽率為;(ⅱ)當(dāng)中簽率不超過時(shí),可借助“好友助力”活動(dòng)增加中簽率,每邀請(qǐng)到一位好友參與“好友助力”活動(dòng)可使中簽率增加.為了使中簽率超過,則至少需要邀請(qǐng)________位好友參與到“好友助力”活動(dòng).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),,的導(dǎo)函數(shù).

          1)若,求處的切線方程;

          2)若可上單調(diào)遞增,求的取值范圍;

          3)求證:當(dāng)時(shí)在區(qū)間內(nèi)存在唯一極大值點(diǎn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知,.

          (1)當(dāng)時(shí),求函數(shù)圖象在處的切線方程;

          (2)若對(duì)任意,不等式恒成立,求的取值范圍;

          (3)若存在極大值和極小值,且極大值小于極小值,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知直線lymx2+2與圓Cx2+y29交于AB兩點(diǎn),則使弦長(zhǎng)|AB|為整數(shù)的直線l共有(

          A.6B.7C.8D.9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線的參數(shù)方程為為參數(shù)),,為曲線上的一動(dòng)點(diǎn).

          (I)求動(dòng)點(diǎn)對(duì)應(yīng)的參數(shù)從變動(dòng)到時(shí),線段所掃過的圖形面積;

          (Ⅱ)若直線與曲線的另一個(gè)交點(diǎn)為,是否存在點(diǎn),使得為線段的中點(diǎn)?若存在,求出點(diǎn)坐標(biāo);若不存在,說明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知曲線C1的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ16cosθ.

          1)把曲線C2的極坐標(biāo)方程化為直角坐標(biāo)方程;

          2)求C1C2交點(diǎn)的直角坐標(biāo).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的導(dǎo)函數(shù)是偶函數(shù),若方程在區(qū)間(其中為自然對(duì)數(shù)的底)上有兩個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】過點(diǎn)的動(dòng)直線ly軸交于點(diǎn),過點(diǎn)T且垂直于l的直線與直線相交于點(diǎn)M.

          1)求M的軌跡方程;

          2)設(shè)M位于第一象限,以AM為直徑的圓y軸相交于點(diǎn)N,且,求的值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案