日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知橢圓的上頂點為,且過點

          (1)求橢圓的方程及其離心率;

          (2)斜率為的直線與橢圓交于兩個不同的點,當(dāng)直線的斜率之積是不為0的定值時,求此時的面積的最大值.

          【答案】(1),;(2)1

          【解析】

          試題1)由題意易得將點代入到橢圓方程可得的值,即可得橢圓的方程及其離心率;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程,運用韋達(dá)定理,將化簡為,根據(jù)其為定值得的值,然后利用弦長公式將表示為關(guān)于的函數(shù),利用二次函數(shù)的性質(zhì)可得結(jié)果.

          試題解析:(1)由題意可得

          在橢圓上,所以,解得

          所以橢圓的方程為,

          所以,故橢圓的離心率.

          (2)設(shè)直線的方程為

          ,消去,得,

          所以

          設(shè),則 ,

          由題意,為定值,所以,即,解得

          此時

          , 到直線的距離

          顯然,當(dāng)(此時,滿足),即時,取得最大值,最大值為

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          (I)當(dāng)時,證明:當(dāng)時,;

          (II)若當(dāng)時,恒成立,求a的取值范圍。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】三棱柱中,平面,是邊長為的等邊三角形,邊中點,且.

          (1)求證:平面平面;

          (2)求證:平面

          (3)求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在含有個元素的集合中,若這個元素的一個排列(,,…,)滿足,則稱這個排列為集合的一個錯位排列(例如:對于集合,排列的一個錯位排列;排列不是的一個錯位排列).記集合的所有錯位排列的個數(shù)為.

          (1)直接寫出,,的值;

          (2)當(dāng)時,試用,表示,并說明理由;

          (3)試用數(shù)學(xué)歸納法證明:為奇數(shù).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知圓的圓心為原點,且與直線相切.

          1)求圓的方程;

          2)點在直線上,過點引圓的兩條切線,,切點為,,求證:直線恒過定點.

          3)求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】假設(shè)關(guān)于某設(shè)備的使用年限x和所支出的維修費用y(萬元)有如下的統(tǒng)計資料:

          使用年限x

          2

          3

          4

          5

          6

          維修費用y

          2.2

          3.8

          5.5

          6.5

          7.0

          若由資料知yx呈線性相關(guān)關(guān)系.

          1)請畫出上表數(shù)據(jù)的散點圖;

          2)請根據(jù)最小二乘法求出線性回歸方程的回歸系數(shù)ab;

          3)估計使用年限為10年時,維修費用是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,DAC的中點,四邊形BDEF是菱形,平面平面ABC,,

          若點M是線段BF的中點,證明:平面AMC;

          求平面AEF與平面BCF所成的銳二面角的余弦值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線,不過坐標(biāo)原點的直線交于,兩點.

          (Ⅰ)若,證明:直線過定點;

          (Ⅱ)設(shè)過且與相切的直線為,過且與相切的直線為.當(dāng)交于點時,求的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)求函數(shù)的單調(diào)區(qū)間;

          (2)記函數(shù)的極值點為,若,且,求證:

          查看答案和解析>>

          同步練習(xí)冊答案