【題目】已知拋物線:
,不過(guò)坐標(biāo)原點(diǎn)
的直線
交于
,
兩點(diǎn).
(Ⅰ)若,證明:直線
過(guò)定點(diǎn);
(Ⅱ)設(shè)過(guò)且與
相切的直線為
,過(guò)
且與
相切的直線為
.當(dāng)
與
交于點(diǎn)
時(shí),求
的方程.
【答案】(Ⅰ)證明見(jiàn)解析;(Ⅱ).
【解析】
試題設(shè),
.
(Ⅰ)設(shè)直線的方程為,聯(lián)立方程組,得到則
,再由
,
所以,代入求得
,即可判定直線過(guò)定點(diǎn).
(Ⅱ)解法一:設(shè)直線的方程為,聯(lián)立方程組,利用
,求得
,
得到韋達(dá)定理,在利用斜率公式,求得直線的斜率,進(jìn)而得到直線的方程;
解法二:由,則過(guò)
且與
相切的直線
的斜率為
,
的斜率為
,轉(zhuǎn)化為
方程
的兩個(gè)實(shí)根,求得
的值,進(jìn)而求解直線的方程;
解法三:由,則過(guò)
且與
相切的直線
的斜率為
,同理,
的斜率為
.
得到切線,
的方程,代入點(diǎn)
,得
,
,即可得到直線的方程.
試題解析:
設(shè),
.
(Ⅰ)解:顯然直線的斜率存在,設(shè)為
,直線的方程為
.由題意,
.
由,得
.
由題意,該方程的判別式,即
.
則,
.
因?yàn)?/span>,所以
,所以
,
即,即
.
所以.
所以.解得
(舍去),或
.
當(dāng)時(shí),
,滿足
式.
所以直線的方程為
.直線
過(guò)定點(diǎn)
.
(Ⅱ)解法一:過(guò)點(diǎn)且與
:
相切的直線的斜率必存在,設(shè)其斜率為
,則其方程為
,即
.
由消去
并整理得
.
由判別式,解得
.
不妨設(shè)的斜率
,則
的斜率
.
由韋達(dá)定理,得,即
.
.所以
.
同理可得.
直線的方程為
,
即直線的方程為
.
解法二:,所以過(guò)
且與
相切的直線
的斜率為
.
同理,的斜率為
.
:
,即
:
.同理
:
.
因?yàn)?/span>與
的交點(diǎn)
的坐標(biāo)為方程組
的解,
所以,且
.
所以方程,即
的兩個(gè)實(shí)根是
,
.
由,解得
,
.
又點(diǎn),
在
:
上,可得
,
.
直線的方程為
,
即直線的方程為
.
解法三:,所以過(guò)
且與
相切的直線
的斜率為
.同理,
的斜率為
.
所以,切線:
,即
.
又是拋物線
上的點(diǎn),所以
,即
.
故切線的方程為
.同理切線
的方程為
.
又切線與切線
均過(guò)點(diǎn)
,故
,
.
所以切點(diǎn)、
的坐標(biāo)適合方程
.所以
的方程為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:
關(guān)于直線
:
對(duì)稱的圓為
.
(Ⅰ)求圓的方程;
(Ⅱ)過(guò)點(diǎn)作直線
與圓
交于
,
兩點(diǎn),
是坐標(biāo)原點(diǎn),是否存在這樣的直線
,使得在平行四邊形
(
和
為對(duì)角線)中
?若存在,求出所有滿足條件的直線
的方程;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的上頂點(diǎn)為
,且過(guò)點(diǎn)
.
(1)求橢圓的方程及其離心率;
(2)斜率為的直線
與橢圓
交于
兩個(gè)不同的點(diǎn),當(dāng)直線
的斜率之積是不為0的定值時(shí),求此時(shí)
的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)
在
上的最小值和最大值;
(2)當(dāng)時(shí),討論函數(shù)
的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)(
,
,
,
)的部分圖象如圖所示.
(1)求函數(shù)的解析式;
(2)求函數(shù)的最小值及
取到最小值時(shí)自變量x的集合;
(3)將函數(shù)圖像上所有點(diǎn)的縱坐標(biāo)不變,橫坐標(biāo)變?yōu)樵瓉?lái)的(
)倍,得到函數(shù)
的圖象.若函數(shù)
在區(qū)間
上恰有5個(gè)零點(diǎn),求t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中
是自然對(duì)數(shù)的底數(shù))
(1)若,當(dāng)
時(shí),試比較
與2的大小;
(2)若函數(shù)有兩個(gè)極值點(diǎn)
,求
的取值范圍,并證明:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的周期為
,圖象的一個(gè)對(duì)稱中心為
,若先把函數(shù)
的圖象向左平移
個(gè)單位長(zhǎng)度,然后再把所得圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍(縱坐標(biāo)不變),得到函數(shù)
的圖象.
(1)求函數(shù)與
的解析式;
(2)設(shè)函數(shù),試判斷
在
內(nèi)的零點(diǎn)個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司生產(chǎn)某種產(chǎn)品的速度為千克/小時(shí),每小時(shí)可獲得的利潤(rùn)是
元,其中
.
(1)要使生產(chǎn)該產(chǎn)品每小時(shí)獲得的利潤(rùn)為60元,求每小時(shí)生產(chǎn)多少千克?
(2)要使生產(chǎn)400千克該產(chǎn)品獲得的利潤(rùn)最大,問(wèn):此公司每小時(shí)應(yīng)生產(chǎn)多少千克產(chǎn)品?并求出最大利潤(rùn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com