日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 已知函數(shù)g(x)=ax2-2ax+1+b(a>0)在區(qū)間[2,3]上的最大值為4,最小值為1,記f(x)=g(|x|).
          (1)求實數(shù)a,b的值;
          (2)若不等式f(log2k)>f(2)成立,求實數(shù)k的取值范圍;
          (3)對于任意滿足p=x0<x1<x2<…<xn-1<xn=q(n∈N*,n≥3)的自變量x0,x1,x2,…,xn,如果存在一個常數(shù)M>0,使得定義在區(qū)間[p,q]上的一個函數(shù)m(x),|m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M恒成立,則稱函數(shù)m(x)為區(qū)間[p,q]上的有界變差函數(shù).試判斷函數(shù)f(x)是否區(qū)間[1,3]上的有界變差函數(shù),若是,求出M的最小值;若不是,請說明理由.
          考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,二次函數(shù)在閉區(qū)間上的最值
          專題:導(dǎo)數(shù)的綜合應(yīng)用
          分析:(1)由g(x)的對稱軸x=1得g(x)在區(qū)間[2,3]上是增函數(shù),得方程組求出a,b即可;(2)由(1)求出f(x)的表達式,解不等式求出即可;(3)由f(x)的表達式得f(x)為[1,3]上的單調(diào)遞增函數(shù),根據(jù)有界變差函數(shù)的概念求出即可.
          解答: 解:(1)∵g(x)=a(x-1)2+1+b-a,
          又a>0,∴g(x)在區(qū)間[2,3]上是增函數(shù),
          g(2)=1
          g(3)=4
          ,
          解得:a=1,b=0.  
          (2)由(1)得:g(x)=x2-2x+1,
          故f(x)=x2-2|x|+1是偶函數(shù),
          ∴不等式f(
          log
          k
          2
          )>f(2)可化為|
          log
          k
          2
          |>2,
          解得:k∈(0,
          1
          4
          )∪(4,+∞).  
          (3)∵f(x)=
          x2-2x+1,    x≥1
          x2+2x+1,   x<1

          ∴f(x)為[1,3]上的單調(diào)遞增函數(shù),
          則對于任意滿足1=x0<x1<x2<…<xn-1<xn=3(n∈N*,n≥3)的自變量x0,x1,x2,…,xn,
          有f(1)=f(x0)<f(x1)<f(x2)<…<f(xn-1)<f(xn)=f(3),
          ∴|f(x1)-f(x0)|+|f(x2)-f(x1)|+…+|f(xn)-f(xn-1)|
          =f(x1)-f(x0)+f(x2)-f(x1)+…+f(xn)-f(xn-1
          =f(xn)-f(xn-1
          =f(3)-f(1)
          =4,
          ∴存在常數(shù)M≥4,使得
          |m(x1)-m(x0)|+|m(x2)-m(x1)|+…+|m(xn)-m(xn-1)|≤M.  
          函數(shù)f(x)為區(qū)間[1,3]上的有界變差函數(shù).即M的最小值為4.
          點評:本題考察了函數(shù)的性質(zhì),導(dǎo)數(shù)的應(yīng)用,函數(shù)的單調(diào)性,新概念問題,是一道綜合題.
          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          設(shè)a,b是兩條不同直線,α,β是兩個不同平面,下列四個命題中正確的是( 。
          A、若a,b與α所成的角相等,則a∥b
          B、若a∥α,b∥β,α∥β,則a∥b
          C、若a⊥α,b⊥β,α⊥β,則a⊥b
          D、若a?α,b?β,a∥b,則α∥β

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          若實數(shù)x,y滿足
          x-y+1≥0
          x+y≥0
          x≤0
          ,則z=2x+2y的最小值是(  )
          A、0
          B、1
          C、
          3
          D、9

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知復(fù)數(shù)z與(z+2)2-8i都是純虛數(shù),求復(fù)數(shù)z.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          已知a,b均為正數(shù),且a+b=1,證明:
          (1)(ax+by)2≤ax2+by2
          (2)(a+
          1
          a
          2+(b+
          1
          b
          2
          25
          2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,已知四棱錐P-ABCD的底面為菱形,對角線AC與BD相交于點E,平面PAC垂直于底面ABCD,線段PD的中點為F.
          (1)求證:EF∥平面PBC;
          (2)求證:BD⊥PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖所示,在三棱錐P-ABC中,E、F分別為AC、BC的中點.
          (1)求證:EF∥平面PAB;
          (2)若PA=PB,CA=CB,求證:AB⊥PC.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,正四棱錐P-ABCD的高為PO,PO=AB=2.E,F(xiàn)分別是棱PB,CD的中點,Q是棱PC上的點.
          (1)求證:EF∥平面PAD;
          (2)若PC⊥平面QDB,求PQ.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          如圖,△ABC內(nèi)接于⊙O,AB=AC,點D在⊙O上,AD⊥AB,AD交BC于點E,點F在DA的延長線上,AF=AE,求證:
          (Ⅰ)BF是⊙O的切線;
          (Ⅱ)BE2=AE•DF.

          查看答案和解析>>

          同步練習(xí)冊答案