【題目】設(shè)函數(shù)、
滿足關(guān)系
,其中
是常數(shù).
(1)設(shè),
,求
的解析式;
(2)是否存在函數(shù)及常數(shù)
(
)使得
恒成立?若存在,請(qǐng)你設(shè)計(jì)出函數(shù)
及常數(shù)
;不存在,請(qǐng)說明理由;
(3)已知時(shí),總有
成立,設(shè)函數(shù)
(
)且
,對(duì)任意
,試比較
與
的大小.
【答案】(1);(2)當(dāng)
時(shí),
;當(dāng)
時(shí),
;(3)
.
【解析】
(1)由f(x)的解析式求出f(x+α)的解析式,相乘后得到函數(shù)g(x)的解析式;
(2)由逆向思維可知f(x)f(x+α)=sinxcosx,由此可得函數(shù)f(x)及一個(gè)α;
(3)由給出的f(x)求出g(x),從而求出sin[g(x)]與g(sinx),借助于可得答案.
(1)∵f(x)=cosx+sinx,
∴f(x+α)=cosx﹣sinx;
∴g(x)=f(x)f(x+α)=(cosx+sinx)(cosx﹣sinx)
=cos2x﹣sin2x=cos2x;
(2)∵g(x)sin2x=2sinxcosx,
若f(x)=sinx,則f(x+α)=
sin(x+α)=
cosx
∴f(x)=sinx,常數(shù)
;
也可以設(shè)f(x)=cosx,則f(x+α)=
cos(x+α)=
sinx
∴f(x)=cosx,常數(shù)
;
∴當(dāng)時(shí),
;當(dāng)
時(shí),
;
(3)由題意g(x)=kx,sin[g(x)]=sinkx,g(sinx)=ksinx
又0<k<1,所以,
則,所以sinkx>ksinx,
即sin[g(x)]>g(sinx).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家質(zhì)量監(jiān)督檢驗(yàn)檢疫局于2004年5月31日發(fā)布了新的《車輛駕駛?cè)藛T血液、呼氣酒精含量閥值與檢驗(yàn)》國家標(biāo)準(zhǔn).新標(biāo)準(zhǔn)規(guī)定,車輛駕駛?cè)藛T血液中的酒精含量大于或等于毫克/百毫升,小于
毫克/百毫升為飲酒駕車,血液中的酒精含量大于或等于
毫克/百毫升為醉酒駕車.經(jīng)過反復(fù)試驗(yàn),喝一瓶啤酒后酒精在人體血液中的變化規(guī)律的“散點(diǎn)圖”如下圖,該函數(shù)近似模型如下:
.
又已知?jiǎng)偤眠^1小時(shí)時(shí)測(cè)得酒精含量值為毫克/百毫升.根據(jù)上述條件,解答以下問題:
(1)試計(jì)算喝1瓶啤酒多少小時(shí)血液中的酒精含量達(dá)到最大值?最大值是多少?
(2)試計(jì)算喝1瓶啤酒后多少小時(shí)后才可以駕車?(時(shí)間以整分鐘計(jì)算)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是函數(shù)一個(gè)周期內(nèi)的圖象,將
圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來的2倍,縱坐標(biāo)不變,再把所得圖象向右平移
個(gè)單位長(zhǎng)度,得到函數(shù)
的圖象.
(1)求函數(shù)和
的解析式;
(2)若,求
的所有可能的值;
(3)求函數(shù)(
為正常數(shù))在區(qū)間
內(nèi)的所有零點(diǎn)之和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為提高生產(chǎn)質(zhì)量,引入了一批新的生產(chǎn)設(shè)備,為了解生產(chǎn)情況,隨機(jī)抽取了新、舊設(shè)備生產(chǎn)的共200件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),統(tǒng)計(jì)得到產(chǎn)品的質(zhì)量指標(biāo)值如下表及圖(所有產(chǎn)品質(zhì)量指標(biāo)值均位于區(qū)間內(nèi)),若質(zhì)量指標(biāo)值大于30,則說明該產(chǎn)品質(zhì)量高,否則說明該產(chǎn)品質(zhì)量一般.
質(zhì)量指標(biāo) | 頻數(shù) |
2 | |
8 | |
10 | |
30 | |
20 | |
10 | |
合計(jì) | 80 |
(1)根據(jù)上述圖表完成下列列聯(lián)表,并判斷是否有
的把握認(rèn)為產(chǎn)品質(zhì)量高與引人新設(shè)備有關(guān);
新舊設(shè)備產(chǎn)品質(zhì)量列聯(lián)表
產(chǎn)品質(zhì)量高 | 產(chǎn)品質(zhì)量一般 | 合計(jì) | |
新設(shè)備產(chǎn)品 | |||
舊設(shè)備產(chǎn)品 | |||
合計(jì) |
(2)從舊設(shè)備生產(chǎn)的質(zhì)量指標(biāo)值位于區(qū)間的產(chǎn)品中,按分層抽樣抽取6件產(chǎn)品,再從這6件產(chǎn)品中隨機(jī)選取2件產(chǎn)品進(jìn)行質(zhì)量檢測(cè),求至少有一件產(chǎn)品質(zhì)量指標(biāo)值位于
的概率.
附:,
.
0.10 | 0.05 | 0.01 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系上放置一個(gè)邊長(zhǎng)為1的正方形
,此正方形
沿
軸滾動(dòng)(向左或向右均可),滾動(dòng)開始時(shí),點(diǎn)
位于原點(diǎn)處,設(shè)頂點(diǎn)
的縱坐標(biāo)與橫坐標(biāo)的函數(shù)關(guān)系式
,
,該函數(shù)相鄰兩個(gè)零點(diǎn)之間的距離為
.
(1)寫出的值并求出頂點(diǎn)
到
的最小運(yùn)動(dòng)路徑的長(zhǎng)度
的值;
(2)寫出函數(shù),
,
的表達(dá)式;并研究該函數(shù)除周期外的基本性質(zhì)(無需證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若關(guān)于x的方程有解,求實(shí)數(shù)a的最小整數(shù)值;
(2)若對(duì)任意的,函數(shù)
在區(qū)間
上的最大值與最小值的差不超過1,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】張軍自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營(yíng)一家干果店,銷售的干果中有松子、開心果、腰果、核桃,價(jià)格依次為120元/千克、80元/千克、70元/千克、40元千克,為增加銷量,張軍對(duì)這四種干果進(jìn)行促銷:一次購買干果的總價(jià)達(dá)到150元,顧客就少付x(2x∈Z)元.每筆訂單顧客網(wǎng)上支付成功后,張軍會(huì)得到支付款的80%.
①若顧客一次購買松子和腰果各1千克,需要支付180元,則x=________;
②在促銷活動(dòng)中,為保證張軍每筆訂單得到的金額均不低于促銷前總價(jià)的七折,則x的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為
,且
,圓
與
軸交于點(diǎn)
,
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(1)求圓與橢圓
的方程;
(2)圓的切線
交橢圓
于點(diǎn)
,
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,離心率為
,直線
與橢圓C交于A,B兩點(diǎn),且
.
(1)求橢圓C的方程.
(2)不經(jīng)過點(diǎn)的直線
被圓
截得的弦長(zhǎng)與橢圓C的長(zhǎng)軸長(zhǎng)相等,且直線
與橢圓C交于D,E兩點(diǎn),試判斷
的周長(zhǎng)是否為定值?若是,求出定值;若不是,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com