日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】x,y 滿足約束條件 ,若 z=y﹣ax 取得最大值的最優(yōu)解不唯一,則實(shí)數(shù) a 的值為(
          A. 或﹣1
          B.2 或
          C.2 或1
          D.2 或﹣1

          【答案】D
          【解析】解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:(陰影部分ABC).

          由z=y﹣ax得y=ax+z,即直線的截距最大,z也最大.

          若a=0,此時(shí)y=z,此時(shí),目標(biāo)函數(shù)只在A處取得最大值,不滿足條件,

          若a>0,目標(biāo)函數(shù)y=ax+z的斜率k=a>0,要使z=y﹣ax取得最大值的最優(yōu)解不唯一,

          則直線y=ax+z與直線2x﹣y+2=0平行,此時(shí)a=2,

          若a<0,目標(biāo)函數(shù)y=ax+z的斜率k=a<0,要使z=y﹣ax取得最大值的最優(yōu)解不唯一,

          則直線y=ax+z與直線x+y﹣2=0,平行,此時(shí)a=﹣1,

          綜上a=﹣1或a=2,

          故選:D.

          作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,得到直線y=ax+z斜率的變化,從而求出a的取值.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知圓經(jīng)過(guò) 兩點(diǎn),且圓心在直線上.

          (1)求圓的標(biāo)準(zhǔn)方程;

          (2)過(guò)圓內(nèi)一點(diǎn)作兩條相互垂直的弦,當(dāng)時(shí),求四邊形的面積.

          (3)設(shè)直線與圓相交于兩點(diǎn), ,且的面積為,求直線的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知直線l經(jīng)過(guò)直線2xy50x2y0的交點(diǎn)P.

          (1)點(diǎn)A(5,0)到直線l的距離為3,求直線l的方程;

          (2)求點(diǎn)A(5,0)到直線l的距離的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在正方體ABCDA1B1C1D1中,下列說(shuō)法正確的是____ (填序號(hào)).

          (1)直線AC1在平面CC1B1B內(nèi).

          (2)設(shè)正方形ABCDA1B1C1D1的中心分別為O、O1,則平面AA1C1C與平面BB1D1D的交線為OO1.

          (3)由A、C1、B1確定的平面是ADC1B1.

          (4)由A、C1、B1確定的平面與由A、C1D確定的平面是同一個(gè)平面.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)復(fù)數(shù)z=2m+4-m2i,當(dāng)實(shí)數(shù)m取何值時(shí),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn):

          1位于虛軸上?

          2位于一、三象限

          3位于以原點(diǎn)為圓心,以4為半徑的圓上?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】直線l1過(guò)點(diǎn)A(0,1),l2過(guò)點(diǎn)B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】袋中有20個(gè)大小相同的球,其中記上0號(hào)的有10個(gè),記上n號(hào)的有n個(gè)n=1,2,3,4,現(xiàn)從袋中任取一球,X表示所取球的標(biāo)號(hào).

          1求X的分布列,均值和方差;

          2若Y=aX+b,EY=1,DY=11,試求a,b的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】設(shè)函數(shù)f(x)=log2x+ax+b(a>0),若存在實(shí)數(shù)b,使得對(duì)任意的x∈[t,t+2](t>0)都有|f(x)|≤1+a,則t的最小值是(
          A.2
          B.1
          C.
          D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】假設(shè)某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬(wàn)元)有如下的統(tǒng)計(jì)資料:

          x

          2

          3

          4

          5

          6

          y

          2.2

          3.8

          5.5

          6.5

          7.0

          試求:(1yx之間的回歸方程;

          2)當(dāng)使用年限為10年時(shí),估計(jì)維修費(fèi)用是多少?

          查看答案和解析>>

          同步練習(xí)冊(cè)答案