【題目】在平面直角坐標(biāo)系中,曲線
的參數(shù)方程為
(
為參數(shù)),在以
為極點(diǎn),
軸的正半軸為極軸的極坐標(biāo)系中,曲線
是圓心為
,半徑為1的圓.
(1)求曲線,
的直角坐標(biāo)方程;
(2)設(shè)為曲線
上的點(diǎn),
為曲線
上的點(diǎn),求
的取值范圍.
【答案】(1) 的直角坐標(biāo)方程為
,
的直角坐標(biāo)方程為
.(2)
.
【解析】試題分析:(1)利用平方法消去參數(shù)可得
的直角坐標(biāo)方程,將極坐標(biāo)化為直角坐標(biāo)可得曲線
的圓心的直角坐標(biāo)為
,結(jié)合半徑為
可得
的直角坐標(biāo)方程;(2)根據(jù)曲線
的參數(shù)方程設(shè)
,根據(jù)兩點(diǎn)間的距離公式,由三角函數(shù)和二次函數(shù)的性質(zhì)可得
的取值范圍,結(jié)合圓的幾何性質(zhì)可得答案.
試題解析:(1)消去參數(shù)可得
的直角坐標(biāo)方程為
,
曲線的圓心的直角坐標(biāo)為
,
∴的直角坐標(biāo)方程為
.
(2)設(shè),則
.
∵,∴
,
,根據(jù)題意可得
,
,即
的取@值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,且曲線
在
處的切線方程為
.
(1)求,
的值;
(2)求函數(shù)在
上的最小值;
(3)證明:當(dāng)時(shí),
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,直線
的方程是
,圓
的參數(shù)方程是
(
為參數(shù)),以原點(diǎn)
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)分別求直線與圓
的極坐標(biāo)方程;
(2)射線:
(
)與圓
的交點(diǎn)為
,
兩點(diǎn),與直線
交于點(diǎn)
,射線
:
與圓
交于
,
兩點(diǎn),與直線
交于點(diǎn)
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是函數(shù)
的導(dǎo)函數(shù),且對(duì)任意的實(shí)數(shù)
都有
(
是自然對(duì)數(shù)的底數(shù)),
,若不等式
的解集中恰有兩個(gè)整數(shù),則實(shí)數(shù)
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),
,其中
是自然常數(shù).
(1)判斷函數(shù)在
內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2) ,
,使得不等式
成立,試求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】【2018廣東省深中、華附、省實(shí)、廣雅四校聯(lián)考】已知橢圓的離心率為
,圓
與
軸交于點(diǎn)
,
為橢圓
上的動(dòng)點(diǎn),
,
面積最大值為
.
(I)求圓與橢圓
的方程;
(II)圓的切線
交橢圓于點(diǎn)
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng),
時(shí),求函數(shù)
在
處的切線方程;
(2)當(dāng)時(shí),求函數(shù)
的單調(diào)區(qū)間;
(3)在(1)的條件下,證明:(其中
為自然對(duì)數(shù)的底數(shù))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知A、B、C是長(zhǎng)軸長(zhǎng)為4的橢圓E上的三點(diǎn),點(diǎn)A是長(zhǎng)軸的一個(gè)端點(diǎn),BC過(guò)橢圓中心O,且,|BC|=2|AC|.
(1)求橢圓E的方程;
(2)在橢圓E上是否存點(diǎn)Q,使得?若存在,有幾個(gè)(不必求出Q點(diǎn)的坐標(biāo)),若不存在,請(qǐng)說(shuō)明理由.
(3)過(guò)橢圓E上異于其頂點(diǎn)的任一點(diǎn)P,作的兩條切線,切點(diǎn)分別為M、N,若直線MN在x軸、y軸上的截距分別為m、n,證明:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于厘米的玉米為高莖玉米,否則為矮莖玉米
(1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過(guò)
的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方式從抗倒伏的玉米中抽出株,再?gòu)倪@
株玉米中選取
株進(jìn)行雜交實(shí)驗(yàn),選取的植株均為矮莖的概率是多少?
(,其中
)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com