日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 精英家教網 > 高中數學 > 題目詳情

          【題目】已知函數, ,其中是自然常數.

          (1)判斷函數內零點的個數,并說明理由;

          (2) , ,使得不等式成立,試求實數的取值范圍.

          【答案】(1)見解析;(2).

          【解析】試題分析:(1)對函數求導, ,得到函數上單調遞增,根據零點存在定理得到函數存在一個零點;(2不等式等價于,,對兩邊的函數分別求導研究單調性,求得最值得到取得最大值, 取得最小值,故只需要,解出即可.

          解析:

          (1)函數上的零點的個數為1,理由如下:

          因為,所以,

          因為,所以,所以函數上單調遞增.

          因為 ,根據函數零點存在性定理得函數上存在1個零點.

          (2)因為不等式等價于

          所以, ,使得不等式成立,等價于

          ,即,

          時, ,故在區(qū)間上單調遞增,

          所以當時, 取得最小值,又,

          時, , , ,所以,故函數在區(qū)間上單調遞減.

          因此,當時, 取得最大值,所以,所以,

          所以實數的取值范圍為.

          練習冊系列答案
          相關習題

          科目:高中數學 來源: 題型:

          【題目】已知拋物線 的焦點為,圓 ,過作垂直于軸的直線交拋物線兩點,且的面積為.

          (1)求拋物線的方程和圓的方程;

          (2)若直線、均過坐標原點,且互相垂直, 交拋物線,交圓, 交拋物線,交圓,求的面積比的最小值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】設函數.

          (1)當時,求的單調區(qū)間;

          (2)若的圖象與軸交于兩點,起,求的取值范圍;

          (3)令, ,證明: .

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】[選修4-4:坐標系與參數方程]

          在平面直角坐標系中,已知直線 為參數),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

          (1)求曲線的直角坐標方程;

          (2)設點的極坐標為,直線與曲線的交點為, ,求的值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知函數(其中是自然對數的底數)

          (1)若,當時,試比較2的大;

          (2)若函數有兩個極值點,求的取值范圍,并證明:

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在平面直角坐標系中,曲線的參數方程為為參數),在以為極點, 軸的正半軸為極軸的極坐標系中,曲線是圓心為,半徑為1的圓.

          (1)求曲線 的直角坐標方程;

          (2)設為曲線上的點, 為曲線上的點,求的取值范圍.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】已知四棱錐,底面為菱形,,上的點,過的平面分別交,于點,,且平面.

          (1)證明:;

          (2)當的中點,,與平面所成的角為,求二面角的余弦值.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】在四面體S﹣ABC中,SA⊥平面ABC,∠BAC=120°,SA=AC=2,AB=1,則該四面體的外接球的表面積為

          A. 11π B. C. D.

          查看答案和解析>>

          科目:高中數學 來源: 題型:

          【題目】[2018·石家莊一檢]已知函數

          (1)若,求函數的圖像在點處的切線方程;

          (2)若函數有兩個極值點,,且,求證:

          查看答案和解析>>

          同步練習冊答案