日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

          在平面直角坐標(biāo)系中,已知直線 為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求曲線的直角坐標(biāo)方程;

          (2)設(shè)點的極坐標(biāo)為,直線與曲線的交點為, ,求的值.

          【答案】(1) (2)

          【解析】試題分析:(Ⅰ)直接由直線的參數(shù)方程消去參數(shù)t得到直線的普通方程;把等式兩邊同時乘以ρ,代入x=ρcosθ,ρ2=x2+y2得答案;

          )把直線的參數(shù)方程代入圓的普通方程,利用直線參數(shù)方程中參數(shù)t的幾何意義求得的值.

          試題解析:

          (1)把展開得

          兩邊同乘.

          , , 代入①即得曲線的直角坐標(biāo)方程為.

          (2)將代入②式,得,

          易知點的直角坐標(biāo)為.

          設(shè)這個方程的兩個實數(shù)根分別為, ,則由參數(shù)的幾何意義即得.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知空間幾何體中, 均為邊長為的等邊三角形, 為腰長為的等腰三角形,平面平面,平面平面.

          試在平面內(nèi)作一條直線,使得直線上任意一點的連線均與平面平行,并給出詳細(xì)證明;

          求三棱錐的體積.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】隨著共享單車的成功運營,更多的共享產(chǎn)品逐步走入大家的世界,共享汽車、共享籃球、共享充電寶等各種共享產(chǎn)品層出不窮.某公司隨即抽取人對共享產(chǎn)品是否對日常生活有益進行了問卷調(diào)查,并對參與調(diào)查的人中的性別以及意見進行了分類,得到的數(shù)據(jù)如下表所示:

          總計

          認(rèn)為共享產(chǎn)品對生活有益

          認(rèn)為共享產(chǎn)品對生活無益

          總計

          (1)根據(jù)表中的數(shù)據(jù),能否在犯錯誤的概率不超過的前提下,認(rèn)為對共享產(chǎn)品的態(tài)度與性別有關(guān)系?

          (2)現(xiàn)按照分層抽樣從認(rèn)為共享產(chǎn)品增多對生活無益的人員中隨機抽取人,再從人中隨機抽取人贈送超市購物券作為答謝,求恰有人是女性的概率.

          參與公式:

          臨界值表:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在直角坐標(biāo)系中,直線的方程是,圓的參數(shù)方程是為參數(shù)),以原點為極點, 軸的非負(fù)半軸為極軸建立極坐標(biāo)系.

          (1)分別求直線與圓的極坐標(biāo)方程;

          (2)射線: )與圓的交點為, 兩點,與直線交于點射線: 與圓交于, 兩點,與直線交于點,求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知分別是橢圓的左、右焦點, 是橢圓上一點,且.

          (1)求橢圓的方程;

          (2)設(shè)直線與橢圓交于兩點,且,試求點到直線的距離.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知是函數(shù)的導(dǎo)函數(shù),且對任意的實數(shù)都有是自然對數(shù)的底數(shù)),,若不等式的解集中恰有兩個整數(shù),則實數(shù)的取值范圍是( )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù) ,其中是自然常數(shù).

          (1)判斷函數(shù)內(nèi)零點的個數(shù),并說明理由;

          (2) , ,使得不等式成立,試求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          (1)當(dāng),,求函數(shù)處的切線方程;

          (2)當(dāng),求函數(shù)的單調(diào)區(qū)間

          (3)在(1)的條件下,證明:(其中為自然對數(shù)的底數(shù)

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,底面是邊長為3的正方形,平面,,,與平面所成的角為.

          (1)求證:平面平面;

          (2)求二面角的余弦值.

          查看答案和解析>>

          同步練習(xí)冊答案