【題目】橢圓上一點(diǎn)
關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為
,
為其右焦點(diǎn),若
,設(shè)
,且
,則該橢圓離心率的最大值為( )
A. B.
C.
D. 1
【答案】A
【解析】由題知AF⊥BF,根據(jù)橢圓的對(duì)稱性,AF′⊥BF′(其中F′是橢圓的左焦點(diǎn)),因此四邊形AFBF′是矩形,于是,|AB|=|FF′|=2c,
,
,根據(jù)橢圓的定義,|AF|+|AF′|=2a,∴
,
∴橢圓離心率,
而,
故e的最大值為,故選A.
橢圓的離心率是橢圓最重要的幾何性質(zhì),求橢圓的離心率(或離心率的取值范圍),常見有兩種方法:
①求出a,c,代入公式;
②只需要根據(jù)一個(gè)條件得到關(guān)于a,b,c的齊次式,結(jié)合b2=a2-c2轉(zhuǎn)化為a,c的齊次式,然后等式(不等式)兩邊分別除以a或a2轉(zhuǎn)化為關(guān)于e的方程(不等式),解方程(不等式)即可得e(e的取值范圍).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,
為正三角形,
,
為棱
的中點(diǎn).
(1)求證:平面平面
;
(2)若直線與平面
所成角為
,求二面角
的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面
是
的菱形,側(cè)面
是邊長(zhǎng)為2的正三角形,且與底面垂直,
為
的中點(diǎn).
(1)求證: 平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某生態(tài)園將一塊三角形地的一角
開辟為水果園,已知角
為
,
的長(zhǎng)度均大于200米,現(xiàn)在邊界
處建圍墻,在
處圍竹籬笆.
(1)若圍墻、
總長(zhǎng)度為200米,如何可使得三角形地塊
面積最大?
(2)已知竹籬笆長(zhǎng)為米,
段圍墻高1米,
段圍墻高2米,造價(jià)均為每平方米100元,求圍墻總造價(jià)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)
的最大值;
(2)令,其圖象上存在一點(diǎn)
,使此處切線的斜率
,求實(shí)數(shù)
的取值范圍;
(3)當(dāng),
時(shí),方程
有唯一實(shí)數(shù)解,求正數(shù)
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,圓的半徑
垂直于直徑
,
為
上一點(diǎn),
的延長(zhǎng)線交圓
于點(diǎn)
,過點(diǎn)
的切線交
的延長(zhǎng)線于點(diǎn)
,連接
.
(1)求證: ;
(2)若,
,求
的長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)在曲線
上,⊙
過原點(diǎn)
,且與
軸的另一個(gè)交點(diǎn)為
,若線段
,⊙
和曲線
上分別存在點(diǎn)
、點(diǎn)
和點(diǎn)
,使得四邊形
(點(diǎn)
,
,
,
順時(shí)針排列)是正方形,則稱點(diǎn)
為曲線
的“完美點(diǎn)”.那么下列結(jié)論中正確的是( ).
A. 曲線上不存在”完美點(diǎn)”
B. 曲線上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于
C. 曲線上只存在一個(gè)“完美點(diǎn)”,其橫坐標(biāo)大于
且小于
D. 曲線上存在兩個(gè)“完美點(diǎn)”,其橫坐標(biāo)均大于
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程選講
在直角坐標(biāo)系中,曲線C1的參數(shù)方程為
(a為參數(shù)),以原點(diǎn)O為極點(diǎn),
以x軸正半軸為極軸,建立極坐標(biāo)系,曲 線C2的極坐標(biāo)方程為
(1)求曲線C1的普通方程與曲線C2的直角坐標(biāo)方程.
(2)設(shè)P為曲線C1上的動(dòng)點(diǎn),求點(diǎn)P到C2上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)P坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年全國(guó)數(shù)學(xué)奧賽試行改革:在高二一年中舉行5次全區(qū)競(jìng)賽,學(xué)生如果其中2次成績(jī)達(dá)全區(qū)前20名即可進(jìn)入省隊(duì)培訓(xùn),不用參加其余的競(jìng)賽,而每個(gè)學(xué)生最多也只能參加5次競(jìng)賽.規(guī)定:若前4次競(jìng)賽成績(jī)都沒有達(dá)全區(qū)前20名,則第5次不能參加競(jìng)賽.假設(shè)某學(xué)生每次成績(jī)達(dá)全區(qū)前20名的概率都是,每次競(jìng)賽成績(jī)達(dá)全區(qū)前20名與否互相獨(dú)立.
(1)求該學(xué)生進(jìn)入省隊(duì)的概率.
(2)如果該學(xué)生進(jìn)入省隊(duì)或參加完5次競(jìng)賽就結(jié)束,記該學(xué)生參加競(jìng)賽的次數(shù)為,求
的分布列及
的數(shù)學(xué)期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com