日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】解答題。
          (1)如圖,證明命題“a是平面π內(nèi)的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥b,則a⊥c”為真.
          (2)寫出上述命題的逆命題,并判斷其真假(不需要證明)

          【答案】
          (1)證明:證法一:如圖,過直線b上任一點(diǎn)作平面α的垂線n,設(shè)直線a,b,c,n對(duì)應(yīng)的方向向量分別是 ,則 共面,

          根據(jù)平面向量基本定理,存在實(shí)數(shù)λ,μ使得

          =

          因?yàn)閍⊥b,所以 ,

          又因?yàn)閍α,n⊥α,

          所以 ,

          ,從而a⊥c

          證法二

          如圖,記c∩b=A,P為直線b上異于點(diǎn)A的任意一點(diǎn),過P做PO⊥π,垂足為O,則O∈c,

          ∵PO⊥π,aπ,

          ∴直線PO⊥a,

          又a⊥b,b平面PAO,PO∩b=P,

          ∴a⊥平面PAO,

          又c平面PAO,

          ∴a⊥c


          (2)證明:逆命題為:a是平面π內(nèi)的一條直線,b是π外的一條直線(b不垂直于π),c是直線b在π上的投影,若a⊥c,則a⊥b,

          逆命題為真命題


          【解析】(1)證法一:做出輔助線,在直線上構(gòu)造對(duì)應(yīng)的方向向量,要證兩條直線垂直,只要證明兩條直線對(duì)應(yīng)的向量的數(shù)量積等于0,根據(jù)向量的運(yùn)算法則得到結(jié)果.證法二:做出輔助線,根據(jù)線面垂直的性質(zhì),得到線線垂直,根據(jù)線面垂直的判定定理,得到線面垂直,再根據(jù)性質(zhì)得到結(jié)論.(2)把所給的命題的題設(shè)和結(jié)論交換位置,得到原命題的逆命題,判斷出你命題的正確性.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】假設(shè)關(guān)于某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元)有如下的統(tǒng)計(jì)資料:

          x

          2

          3

          4

          5

          6

          y

          2.2

          3.8

          5.5

          6.5

          7.0


          (1)畫出散點(diǎn)圖并判斷是否線性相關(guān);
          (2)如果線性相關(guān),求線性回歸方程;
          (3)估計(jì)使用年限為10年時(shí),維修費(fèi)用是多少?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】市疾病控制中心今日對(duì)我校高二學(xué)生進(jìn)行了某項(xiàng)健康調(diào)查,調(diào)查的方法是采取分層抽樣的方法抽取樣本.我校高二學(xué)生共有2000人,抽取了一人200人的樣本,樣本中男生103人,請(qǐng)問我校共有女生(
          A.970
          B.1030
          C.997
          D.206

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖是某工廠對(duì)甲乙兩個(gè)車間各10名工人生產(chǎn)的合格產(chǎn)品的統(tǒng)計(jì)結(jié)果的莖葉圖.設(shè)甲、乙的中位數(shù)分別為x、x , 甲、乙的方差分別為s2、s2 , 則(
          A.x<x , s2<s2
          B.x>x , s2>s2
          C.x>x , s2<s2
          D.x<x , s2>s2

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四邊形ABCD為矩形,且AD=2,AB=1,PA⊥平面ABCD,E為BC上的動(dòng)點(diǎn).

          (1)當(dāng)E為BC的中點(diǎn)時(shí),求證:PE⊥DE;
          (2)設(shè)PA=1,在線段BC上存在這樣的點(diǎn)E,使得二面角P﹣ED﹣A的平面角大小為 .試確定點(diǎn)E的位置.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,在平面直角坐標(biāo)系xoy中,A為以原點(diǎn)O為圓心的單位圓O與x正半軸的交點(diǎn),在圓心角為 的扇形AOB的弧AB上任取一點(diǎn) P,作 PN⊥OA于N,連結(jié)PO,記∠PON=θ.
          (1)設(shè)△PON的面積為y,使y取得最大值時(shí)的點(diǎn)P記為E,點(diǎn)N記為F,求此時(shí) 的值;
          (2)求k=a| || |+ (a∈R,E 是在(1)條件下的點(diǎn) E)的值域.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)f(x)=x2+bx+c,其對(duì)稱軸為y軸(其中b,c為常數(shù)) (Ⅰ)求實(shí)數(shù)b的值;
          (Ⅱ)記函數(shù)g(x)=f(x)﹣2,若函數(shù)g(x)有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)c的取值范圍;
          (Ⅲ)求證:不等式f(c2+1)>f(c)對(duì)任意c∈R成立.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】函數(shù)f(x)= 的定義域?yàn)?/span>

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,四棱錐P﹣ABCD的底面為矩形,PA是四棱錐的高,PB與DC所成角為45°,F(xiàn)是PB的中點(diǎn),E是BC上的動(dòng)點(diǎn).
          (Ⅰ)證明:PE⊥AF;
          (Ⅱ)若BC=2BE=2 AB,求直線AP與平面PDE所成角的大。

          查看答案和解析>>

          同步練習(xí)冊(cè)答案