【題目】已知正方形的邊長為2,分別以
,
為一邊在空間中作正三角形
,
,延長
到點(diǎn)
,使
,連接
,
.
(1)證明: 平面
;
(2)求點(diǎn)到平面
的距離.
【答案】(1)見解析;(2)1.
【解析】試題分析:(1)證線面垂直,先證線線垂直,做出輔助線,根據(jù)長度關(guān)系,首先證得,再證得
,
,根據(jù)線面垂直的判定定理得到線面垂直;(2)根據(jù)條件可得到
平面
,進(jìn)而點(diǎn)
到平面
的距離等于
點(diǎn)到平面
的距離,取
的中點(diǎn)為
,連接
,
平面
,
為點(diǎn)
到平面
的距離.
解析:
(1)連接交
于點(diǎn)
,并連接
,則
,又∵
,
∴,又∵
,∴
,∴
,
∵,∴
平面
,∵
平面
,∴
,
∵,
,∴
,∴
,
即,∵
,∴
平面
.
(2)由題知, ,且
,可得四邊形
為平行四邊形,∴
,
又∵平面
,∴
平面
,∵點(diǎn)
,∴點(diǎn)
到平面
的距離等于
點(diǎn)到平面
的距離,取
的中點(diǎn)為
,連接
,則由(1)可得
.
在中,
,則
,∴
,∴
平面
,即
為點(diǎn)
到平面
的距離.
在中,
,得點(diǎn)
到平面
的距離為1.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(其中
,
為自然對數(shù)的底數(shù)).
(Ⅰ)若函數(shù)無極值,求實(shí)數(shù)
的取值范圍;
(Ⅱ)當(dāng)時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校高三課外興趣小組為了解高三同學(xué)高考結(jié)束后是否打算觀看2018年足球世界杯比賽的情況,從全校高三年級1500名男生、1000名女生中按分層抽樣的方式抽取125名學(xué)生進(jìn)行問卷調(diào)查,情況如下表:
打算觀看 | 不打算觀看 | |
女生 | 20 | b |
男生 | c | 25 |
(1)求出表中數(shù)據(jù)b,c;
(2)判斷是否有99%的把握認(rèn)為觀看2018年足球世界杯比賽與性別有關(guān);
(3)為了計(jì)算“從10人中選出9人參加比賽”的情況有多少種,我們可以發(fā)現(xiàn)它與“從10人中選出1人不參加比賽”的情況有多少種是一致的.現(xiàn)有問題:在打算觀看2018年足球世界杯比賽的同學(xué)中有5名男生、2名女生來自高三(5)班,從中推選5人接受校園電視臺采訪,請根據(jù)上述方法,求被推選出的5人中恰有四名男生、一名女生的概率.
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 |
K0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】深受廣大球迷喜愛的某支歐洲足球隊(duì).在對球員的使用上總是進(jìn)行數(shù)據(jù)分析,為了考察甲球員對球隊(duì)的貢獻(xiàn),現(xiàn)作如下數(shù)據(jù)統(tǒng)計(jì):
球隊(duì)勝 | 球隊(duì)負(fù) | 總計(jì) | |
甲參加 | 22 | b | 30 |
甲未參加 | c | 12 | d |
總計(jì) | 30 | e | n |
(1)求b,c,d,e,n的值,據(jù)此能否有97.7%的把握認(rèn)為球隊(duì)勝利與甲球員參賽有關(guān);
(2)根據(jù)以往的數(shù)據(jù)統(tǒng)計(jì),乙球員能夠勝任前鋒、中鋒、后衛(wèi)以及守門員四個(gè)位置,且出場率分別為:0.2,0.5,0.2,0.1,當(dāng)出任前鋒、中鋒、后衛(wèi)以及守門員時(shí),球隊(duì)輸球的概率依次為:0.4,0.2,0.6,0.2.則:
當(dāng)他參加比賽時(shí),求球隊(duì)某場比賽輸球的概率;
當(dāng)他參加比賽時(shí),在球隊(duì)輸了某場比賽的條件下,求乙球員擔(dān)當(dāng)前鋒的概率;
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某印刷廠為了研究單冊書籍的成本(單位:元)與印刷冊數(shù)
(單位:千冊)之間的關(guān)系,在印制某種書籍時(shí)進(jìn)行了統(tǒng)計(jì),相關(guān)數(shù)據(jù)見下表:
印刷冊數(shù) | |||||
單冊成本 |
根據(jù)以上數(shù)據(jù),技術(shù)人員分別借助甲、乙兩種不同的回歸模型,得到兩個(gè)回歸方程,方程甲:,方程乙:
.
(1)為了評價(jià)兩種模型的擬合效果,完成以下任務(wù).
①完成下表(計(jì)算結(jié)果精確到);
印刷冊數(shù) | ||||||
單冊成本 | ||||||
模型甲 | 估計(jì)值 | |||||
殘差 | ||||||
模型乙 | 估計(jì)值 | |||||
殘差 |
②分別計(jì)算模型甲與模型乙的殘差平方和,并通過比較,判斷哪個(gè)模型擬合效果更好.
(2)該書上市之后,受到廣大讀者熱烈歡迎,不久便全部售罄,于是印刷廠決定進(jìn)行二次印刷,根據(jù)市場調(diào)查,新需求量為千冊,若印刷廠以每冊
元的價(jià)格將書籍出售給訂貨商,求印刷廠二次印刷
千冊獲得的利潤?(按(1)中擬合效果較好的模型計(jì)算印刷單冊書的成本).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】智能手機(jī)的出現(xiàn),改變了我們的生活,同時(shí)也占用了我們大量的學(xué)習(xí)時(shí)間.某市教育機(jī)構(gòu)從名手機(jī)使用者中隨機(jī)抽取
名,得到每天使用手機(jī)時(shí)間(單位:分鐘)的頻率分布直方圖(如圖所示),其分組是:
,
.
(1)根據(jù)頻率分布直方圖,估計(jì)這名手機(jī)使用者中使用時(shí)間的中位數(shù)是多少分鐘? (精確到整數(shù))
(2)估計(jì)手機(jī)使用者平均每天使用手機(jī)多少分鐘? (同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點(diǎn)的值作代表)
(3)在抽取的名手機(jī)使用者中在
和
中按比例分別抽取
人和
人組成研究小組,然后再從研究小組中選出
名組長.求這
名組長分別選自
和
的概率是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著互聯(lián)網(wǎng)的迅速發(fā)展,越來越多的消費(fèi)者開始選擇網(wǎng)絡(luò)購物這種消費(fèi)方式某營銷部門統(tǒng)計(jì)了2019年某月錦州的十大特產(chǎn)的網(wǎng)絡(luò)銷售情況得到網(wǎng)民對不同特產(chǎn)的最滿意度和對應(yīng)的銷售額
(萬元)數(shù)據(jù),如下表:
特產(chǎn)種類 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最滿意度 | ||||||||||
銷售額 |
求銷量額
關(guān)于最滿意度
的相關(guān)系數(shù)
;
我們約定:銷量額
關(guān)于最滿意度
的相關(guān)系數(shù)
的絕對值在
以上(含
)是線性相關(guān)性較強(qiáng);否則,線性相關(guān)性較弱.如果沒有達(dá)到較強(qiáng)線性相關(guān),則采取“末位淘汰”制(即銷售額最少的特產(chǎn)退出銷售),并求在剔除“末位淘汰”的特產(chǎn)后的銷量額
關(guān)于最滿意度
的線性回歸方程(系數(shù)精確到
).
參考數(shù)據(jù):,
,
,
.
附:對于一組數(shù)據(jù).其回歸直線方程
的斜率和截距的最小二乘法估計(jì)公式分別為:
,
.線性相關(guān)系數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)an= sin
,Sn=a1+a2+…+an , 在S1 , S2 , …S100中,正數(shù)的個(gè)數(shù)是( )
A.25
B.50
C.75
D.100
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com