日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,拋物線上一點(diǎn)P的縱坐標(biāo)為3,且|PF|=4,過(guò)M(m,0)作拋物線C的切線MA(斜率不為0),切點(diǎn)為A.

          (1)求拋物線C的方程;

          (2)求證:以FA為直徑的圓過(guò)點(diǎn)M.

          【答案】(1); (2)見(jiàn)解析.

          【解析】

          (1)由拋物線的定義即可求出p的值,即可得解;

          (2)設(shè)切線MA的方程為y=k(x﹣m),k0,聯(lián)立方程,可得△=16k2﹣16km=0,即m=k,切點(diǎn)M(2m,m2),由,即可判定以FA為直徑的圓過(guò)點(diǎn)M.

          (1) ,

          拋物線C的方程為:.

          (2)設(shè)切點(diǎn),切線MA的斜率為k,

          ,,.

          切線MA方程為:,即.

          切線過(guò), ,又.

          ,,

          因此,以FA為直徑的圓過(guò)點(diǎn)M.

          法二:設(shè)切線MA的方程為:

          聯(lián)立方程:,消去y得:.

          由題意知:.

          , .,∴切點(diǎn)A的坐標(biāo)為.

          .,.

          ∴所以FA為直徑的圓點(diǎn)過(guò)點(diǎn)M.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知.

          1)若函數(shù)單調(diào)遞減,求實(shí)數(shù)的取值范圍;

          2)令,若存在,使得成立,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖所示,四邊形EFGH為空間四邊形ABCD的一個(gè)截面,若截面為平行四邊形.

          (1)求證:AB∥平面EFGH

          (2)AB4,CD6,求四邊形EFGH周長(zhǎng)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為(萬(wàn)元),它們與投入資金(萬(wàn)元)的關(guān)系有如下公式:,,今將200萬(wàn)元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬(wàn)元.

          (Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬(wàn)元),求總利潤(rùn)(萬(wàn)元)關(guān)于的函數(shù)關(guān)系式及其定義域;

          (Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知{}是公差不為0的等差數(shù)列,其中a1=1,且a2,a3,a6成等比數(shù)列.

          (1)求數(shù)列{}的通項(xiàng)公式;

          (2)記是數(shù)列{}的前n項(xiàng)和,是否存在n∈N﹡,使得+9n+80<0成立?若存在,求n的最小值;若不存在,說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】對(duì)于正整數(shù),定義,其中、為非負(fù)整數(shù),,且.求最大的正整數(shù),使得存在正整數(shù),對(duì)于任意的正整數(shù),都有.證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個(gè)球面上。則點(diǎn)O到平面ABC的距離為________________。

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】在平面直角坐標(biāo)系中,已知點(diǎn),拋物線的焦點(diǎn)為,設(shè)為拋物線上異于頂點(diǎn)的動(dòng)點(diǎn),直線交拋物線于另一點(diǎn),連結(jié),并延長(zhǎng),分別交拋物線與點(diǎn),.

          1)當(dāng)軸時(shí),求直線軸的交點(diǎn)的坐標(biāo);

          2)設(shè)直線的斜率分別為,試探索是否為定值?若是,求出此定值;若不是,試說(shuō)明理由.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知點(diǎn)是直線上一動(dòng)點(diǎn),PA、PB是圓的兩條切線,A、B為切點(diǎn),若四邊形PACB面積的最小值是2,則的值是

          A. B. C. 2 D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案