日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】在平面直角坐標系中,已知點,拋物線的焦點為,設(shè)為拋物線上異于頂點的動點,直線交拋物線于另一點,連結(jié),,并延長,分別交拋物線與點,.

          1)當軸時,求直線軸的交點的坐標;

          2)設(shè)直線的斜率分別為,,試探索是否為定值?若是,求出此定值;若不是,試說明理由.

          【答案】14,0);(2)是定值,

          【解析】

          1)由拋物線方程求出焦點坐標,得到直線MN的方程,代入拋物線方程求出M、N的坐標,由兩點式求得直線ME的方程,和拋物線方程聯(lián)立解得P點坐標,同理求得Q點坐標,則直線PQ的方程可求,直線PQx軸的交點坐標可求;

          2)分別設(shè)Mx1,y1),Nx2,y2),Px3,y3),Qx4,y4),再設(shè)直線MN、MP、NQ的直線方程,分別和拋物線方程聯(lián)立后由根與系數(shù)關(guān)系得到y32y2,x34x2,y42y1,x44x1.代入斜率公式整理得答案.

          1)拋物線Cy24x的焦點F1,0).

          MNOx時,直線MN的方程為 x1

          x1代入拋物線方程y24x,得y=±2

          不妨設(shè)M1,2),N(﹣1,2),

          則直線ME的方程為y=﹣2x+4,

          ,解得x1x4,于是得P4,﹣4).

          同理得Q4,4),所以直線PQ的方程為x4

          故直線PQx軸的交點坐標(40);

          2)設(shè)直線MN的方程為xmy+1,

          并設(shè)Mx1,y1),Nx2,y2),Px3,y3),Qx4,y4).

          ,得y24my40,

          于是y1y2=﹣4 ,從而

          設(shè)直線MP的方程為xmy+2,

          ,得y24my80,

          y1y3=﹣8 ,x1x34

          設(shè)直線NQ的方程為xty+2

          ,得y24ty80

          于是y2y4=﹣8 ,x2x44

          ①②③④⑤⑥,得y32y2,x34x2,y42y1,

          x44x1,

          練習冊系列答案
          相關(guān)習題

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù)

          (1)求函數(shù)的值域;

          (2)若時,函數(shù)的最小值為,求的值和函數(shù)的最大值.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知拋物線C:x2=2py(p>0)的焦點為F,拋物線上一點P的縱坐標為3,且|PF|=4,過M(m,0)作拋物線C的切線MA(斜率不為0),切點為A.

          (1)求拋物線C的方程;

          (2)求證:以FA為直徑的圓過點M.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】如圖,已知兩個半徑不相等的相交于M、N兩點,且分別與內(nèi)切于S、T兩點。求證:OM⊥MN的充分必要條件是S、N、T三點共線。

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】設(shè)函數(shù)yfx)的定義域為R,并且滿足fx+y)=fx)+fy),f)=1,當x>0時,fx)>0.

          (1)求f(0)的值;

          (2)判斷函數(shù)的奇偶性;

          (3)如果fx)+f(2+x)<2,求x的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】給定正整數(shù),已知用克數(shù)都是正整數(shù)的塊砝碼和一臺天平可以稱出質(zhì)量為克的所有物品.

          (1)的最小值;

          (2)當且僅當取什么值時,上述塊砝碼的組成方式是惟一確定的?并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】

          設(shè)平面上向量(cosα,sinα) (0°≤α360°)(,)

          (1)試證:向量垂直;

          (2)當兩個向量的模相等時,求角α.

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知函數(shù).

          (1)若函數(shù)上為增函數(shù),求的取值范圍;

          (2)若函數(shù)有兩個不同的極值點,記作,,且,證明:為自然對數(shù)).

          查看答案和解析>>

          科目:高中數(shù)學 來源: 題型:

          【題目】已知橢圓經(jīng)過點離心率為. 

          (1)求橢圓的標準方程;

          (2)過坐標原點作直線交橢圓兩點,過點的平行線交橢圓、兩點.

          ①是否存在常數(shù)滿足?若存在,求出這個常數(shù);若不存在,請說明理由;

          ②若的面積為, 的面積為,求的最大值.

          查看答案和解析>>

          同步練習冊答案