【題目】如圖,已知兩個(gè)半徑不相等的與
相交于M、N兩點(diǎn),且
、
分別與
內(nèi)切于S、T兩點(diǎn)。求證:OM⊥MN的充分必要條件是S、N、T三點(diǎn)共線。
【答案】見解析
【解析】
如圖,設(shè)的半徑分別為
.由條件知
三點(diǎn)共線,
三點(diǎn)共線,且OS=OT=r.連結(jié)
.
充分性.設(shè)S、N、T三點(diǎn)共線,則∠S=∠T.又與
均為等腰三角形.
故∠S=∠,∠T=∠
.
于是,∠S≈∠,∠T=∠
.
從而,.
故四邊形為平行四邊形.
因此,,
.
故.
從而,.由此得
.
又由于,故
.
必要性.若,
,有
.從而
..
設(shè)OM=a,由,
,知
與
的周長(zhǎng)都等于
,記
.
由三角形面積的海倫公式,有.
化簡(jiǎn)得.
又已知,有
.
故,
.
所以,為平行四邊形.從而,
.
又與
均為等腰三角形,
,
,即,
.于是,
.
故 ,
.
所以,S、N、T三點(diǎn)共線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若函數(shù)
恰有一個(gè)零點(diǎn),求
的取值范圍;
(2)當(dāng)時(shí),
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)甲、乙兩種產(chǎn)品所得利潤(rùn)分別為和
(萬元),它們與投入資金
(萬元)的關(guān)系有如下公式:
,
,今將200萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投入資金都不低于25萬元.
(Ⅰ)設(shè)對(duì)乙種產(chǎn)品投入資金(萬元),求總利潤(rùn)
(萬元)關(guān)于
的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配投入資金,才能使總利潤(rùn)最大,并求出最大總利潤(rùn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于正整數(shù)、
,定義
,其中
、
為非負(fù)整數(shù),
,且
.求最大的正整數(shù)
,使得存在正整數(shù)
,對(duì)于任意的正整數(shù)
,都有
.證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱錐S-ABC的底面是以AB為斜邊的等腰直角三角形,SA=SB= SC=2,AB=2,設(shè)S、A、B、C四點(diǎn)均在以O為球心的某個(gè)球面上。則點(diǎn)O到平面ABC的距離為________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)的圖像與y軸交點(diǎn)的縱坐標(biāo)為1,在y軸右側(cè)的第一個(gè)最大值和最小值分別為
和
.
(1)求函數(shù)的解析式:
(2)將函數(shù)圖像上所有點(diǎn)的橫坐標(biāo)縮小原來的
(縱坐標(biāo)不變),再將所得圖像沿x軸正方向平移
個(gè)單位,得到函數(shù)
的圖像,求函數(shù)
的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知點(diǎn)
,拋物線
的焦點(diǎn)為
,設(shè)
為拋物線
上異于頂點(diǎn)的動(dòng)點(diǎn),直線
交拋物線
于另一點(diǎn)
,連結(jié)
,
,并延長(zhǎng),分別交拋物線
與點(diǎn)
,
.
(1)當(dāng)軸時(shí),求直線
與
軸的交點(diǎn)的坐標(biāo);
(2)設(shè)直線,
的斜率分別為
,
,試探索
是否為定值?若是,求出此定值;若不是,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,
,對(duì)任意
,有
成立.
(1)求的通項(xiàng)公式;
(2)設(shè),
,
是數(shù)列
的前
項(xiàng)和,求正整數(shù)
,使得對(duì)任意
,
恒成立;
(3)設(shè),
是數(shù)列
的前
項(xiàng)和,若對(duì)任意
均有
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某小區(qū)為美化環(huán)境,準(zhǔn)備在小區(qū)內(nèi)的草坪的一側(cè)修建一條直路OC,另一側(cè)修建一條休閑大道.休閑大道的前一段OD是函數(shù)的圖象的一部分,后一段DBC是函數(shù)
的圖象,圖象的最高點(diǎn)為
,且
,垂足為點(diǎn)F.
(1)求函數(shù)的解析式;
(2)若在草坪內(nèi)修建如圖所示的矩形兒童樂園PMFE,點(diǎn)P在曲線OD上,其橫坐標(biāo)為,點(diǎn)E在OC上,求兒童樂園的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com