日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】設(shè),函數(shù).

          1)若,求函數(shù)在區(qū)間上的最大值;

          2)若,寫(xiě)出函數(shù)的單調(diào)區(qū)間(寫(xiě)出必要的過(guò)程,不必證明);

          3)若存在,使得關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

          【答案】1;(2)在遞增,遞減,遞增;(3.

          【解析】

          1)當(dāng)時(shí),化簡(jiǎn)函數(shù)的解析式,作出函數(shù)的圖象,即可求解;

          (2)求出函數(shù)的解析式,結(jié)合二次函數(shù)的性質(zhì),分類討論,即可求解;

          (3)當(dāng)時(shí),運(yùn)用函數(shù)的單調(diào)性,結(jié)合函數(shù)的最值,即可求解.

          1)由題意,當(dāng)時(shí),函數(shù)

          作出函數(shù)的圖象,如圖所示,

          可得函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),

          所以當(dāng),函數(shù)取得最大值,此時(shí)最大值為.

          2)由函數(shù)

          ①當(dāng)時(shí),,

          因?yàn)?/span>,所以,所以函數(shù)上單調(diào)遞增;

          ②當(dāng)時(shí),,

          因?yàn)?/span>,所以,

          所以函數(shù)遞增,遞減;

          綜上可得,函數(shù)遞增,遞減,遞增.

          3)由(2)知,當(dāng)時(shí),函數(shù)遞增,遞減,當(dāng)且僅當(dāng)時(shí),關(guān)于的方程有三個(gè)不相等的實(shí)數(shù)解,

          ,

          ,則函數(shù)上是增函數(shù),故,

          所以,

          即實(shí)數(shù)的取值范圍是.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時(shí)間情況,隨機(jī)抽取了某市名觀眾進(jìn)行調(diào)查,其中有名男觀眾和名女觀眾,將這名觀眾收視時(shí)間編成如圖所示的莖葉圖(單位:分鐘),收視時(shí)間在分鐘以上(包括分鐘)的稱為“朗讀愛(ài)好者”,收視時(shí)間在分鐘以下(不包括分鐘)的稱為“非朗讀愛(ài)好者”.

          (1)若采用分層抽樣的方法從“朗讀愛(ài)好者”和“非朗讀愛(ài)好者”中隨機(jī)抽取名,再?gòu)倪@名觀眾中任選名,求至少選到名“朗讀愛(ài)好者”的概率;

          (2)若從收視時(shí)間在40分鐘以上(包括40分鐘)的所有觀眾中選出男、女觀眾各1名,求選出的這兩名觀眾時(shí)間相差5分鐘以上的概率.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某互聯(lián)網(wǎng)公司為了確定下一季度的前期廣告投入計(jì)劃,收集了近個(gè)月廣告投入量單位:萬(wàn)元)和收益單位:萬(wàn)元)的數(shù)據(jù)如下表

          月份

          廣告投入量

          收益

          他們分別用兩種模型①,分別進(jìn)行擬合,得到相應(yīng)的回歸方程并進(jìn)行殘差分析,得到如圖所示的殘差圖及一些統(tǒng)計(jì)量的值

          Ⅰ)根據(jù)殘差圖,比較模型①,②的擬合效果,應(yīng)選擇哪個(gè)模型?并說(shuō)明理由;

          Ⅱ)殘差絕對(duì)值大于的數(shù)據(jù)被認(rèn)為是異常數(shù)據(jù),需要剔除

          。┨蕹惓(shù)據(jù)后求出(Ⅰ)中所選模型的回歸方程;

          ⅱ)若廣告投入量時(shí),該模型收益的預(yù)報(bào)值是多少

          附:對(duì)于一組數(shù)據(jù),,……,其回歸直線的斜率和截距的最小二乘估計(jì)分別為

          ,.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】函數(shù)

          (1)討論函數(shù)在區(qū)間上的極值點(diǎn)的個(gè)數(shù);

          (2)已知對(duì)任意的恒成立,求實(shí)數(shù)k的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          討論的單調(diào)性.

          ,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】下面給出了根據(jù)我國(guó)2012~2018年水果人均占有量(單位:)和年份代碼繪制的散點(diǎn)圖和線性回歸方程的殘差圖(2012~2018年的年份代碼分別為1~7).

          1)根據(jù)散點(diǎn)圖分析之間的相關(guān)關(guān)系;

          2)根據(jù)散點(diǎn)圖相應(yīng)數(shù)據(jù)計(jì)算得,求關(guān)于的線性回歸方程;

          3)根據(jù)線性回歸方程的殘差圖,分析線性回歸方程的擬合效果.(精確到001

          附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某城市要建造一個(gè)邊長(zhǎng)為的正方形市民休閑公園,將其中的區(qū)域開(kāi)挖成一個(gè)池塘,如圖建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,曲線是函數(shù)圖像的一部分,過(guò)對(duì)邊上一點(diǎn)的區(qū)域內(nèi)作一次函數(shù)的圖像,與線段交于點(diǎn)(點(diǎn)不與點(diǎn)重合),且線段與曲線有且只有一個(gè)公共點(diǎn),四邊形為綠化風(fēng)景區(qū).

          1)寫(xiě)出函數(shù)關(guān)系式;

          2)設(shè)點(diǎn)的橫坐標(biāo)為,將四邊形的面積表示成關(guān)于的函數(shù),并求的最大值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】給定兩個(gè)命題,p:對(duì)任意實(shí)數(shù)x都有x2+ax+1≥0恒成立;q:冪函數(shù)y=xa-1在(0,+∞)內(nèi)單調(diào)遞減;如果pq中有且僅有一個(gè)為真命題,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知等差數(shù)列(公差不為零)和等差數(shù)列,如果關(guān)于的實(shí)系數(shù)方程有實(shí)數(shù)解,那么以下九個(gè)方程)中,無(wú)實(shí)數(shù)解的方程最多有(

          A.3個(gè)B.4個(gè)C.5個(gè)D.6個(gè)

          查看答案和解析>>

          同步練習(xí)冊(cè)答案