日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù),為自然對(duì)數(shù)的底數(shù)).

          (Ⅰ)求函數(shù)的單調(diào)區(qū)間;

          (Ⅱ)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

          【答案】(1) 時(shí),的單調(diào)遞增區(qū)間為,無遞減區(qū)間;時(shí),的單調(diào)遞增區(qū)間為,遞減區(qū)間為.

          (2) 的最大整數(shù)值為3.

          【解析】分析:()先求導(dǎo),再分類討論,即可求出函數(shù)的單調(diào)區(qū)間,

          (Ⅱ)分離參數(shù),轉(zhuǎn)化為對(duì)于恒成立.再根據(jù)導(dǎo)數(shù)與函數(shù)的最值的關(guān)系,通過分類討論,求出的取值范圍,進(jìn)而求出的最大整數(shù)值.

          詳解:解:(Ⅰ).

          ①當(dāng)時(shí),由,得,此時(shí)上為增函數(shù).

          ②當(dāng)時(shí),令,有,

          上為增函數(shù),

          ,有上為減函數(shù),

          綜上,時(shí),的單調(diào)遞增區(qū)間為,無遞減區(qū)間;時(shí),的單調(diào)遞增區(qū)間為,遞減區(qū)間為.

          (Ⅱ)對(duì)于恒成立,

          對(duì)于恒成立.

          由函數(shù)的解析式可得:,分類討論:

          ①由()知,時(shí),上為增函數(shù),

          ,

          恒成立,∴.

          ②當(dāng)時(shí),上為減函數(shù),上為增函數(shù)i.

          ,

          ,

          設(shè),

          上遞增,而,

          ,

          ∴在上存在唯一使得,且,

          ,的最大整數(shù)值為3,使,即的最大整數(shù)值為3.

          綜上,的最大整數(shù)值為3.

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某聯(lián)歡晚會(huì)舉行抽獎(jiǎng)活動(dòng),舉辦方設(shè)置了甲、乙兩種抽獎(jiǎng)方案,方案甲的中獎(jiǎng)率為,中獎(jiǎng)可以獲得2分;方案乙的中獎(jiǎng)率為,中獎(jiǎng)可以獲得3分;未中獎(jiǎng)則不得分。每人有且只有一次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)中獎(jiǎng)與否互不影響,晚會(huì)結(jié)束后憑分?jǐn)?shù)兌換獎(jiǎng)品。

          )若小明選擇方案甲抽獎(jiǎng),小紅選擇方案乙抽獎(jiǎng),記他們的累計(jì)得分為,的概率;

          )若小明、小紅兩人都選擇方案甲或都選擇方案乙進(jìn)行抽獎(jiǎng),問:他們選擇何種方案抽獎(jiǎng),累計(jì)得分的數(shù)學(xué)期望較大?

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知a,b為常數(shù),且a≠0,f(x)=ax2+bx,f(2)=0,方程f(x)=x有兩個(gè)相等實(shí)數(shù)根.

          (1)求函數(shù)f(x)的解析式;

          (2)當(dāng)x∈[1,2]時(shí),求f(x)的值域;

          (3)若F(x)=f(x)-f(-x),試判斷F(x)的奇偶性,并證明你的結(jié)論.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知正三棱錐P﹣ABC,點(diǎn)P,A,B,C都在半徑為 的球面上,若PA,PB,PC兩兩垂直,則球心到截面ABC的距離為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知二次函數(shù)滿足,且

          (1)a , b的值;

          (2),在區(qū)間上的最小值為,最大值為,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.

          1)求函數(shù)的解析式;

          2)設(shè),若時(shí)恒成立,求的范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】橢圓 + =1(a>b>0)的左、右頂點(diǎn)分別是A,B,左、右焦點(diǎn)分別是F1 , F2 . 若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的離心率為

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

          (1)求直線的普通方程與曲線的直角坐標(biāo)方程;

          (2)若直線與曲線交于、兩點(diǎn),求的最小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某城市出租車起步價(jià)為10元,最長(zhǎng)可租乘3km(3km),以后每1km1.6元(不足1km,按1km計(jì)費(fèi)),若出租車行駛在不需等待的公路上,則出租車的費(fèi)用y()與行駛的里程xkm)之間的函數(shù)圖象大致為(

          A. B. C. D.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案