【題目】已知函數(shù),
.
(1)討論函數(shù)的單調(diào)性;
(2)若存在與函數(shù),
的圖象都相切的直線,求實(shí)數(shù)
的取值范圍.
【答案】(1)見解析;(2)
【解析】
(1)對(duì)h(x)求導(dǎo),得,對(duì)
,
分別討論,得單調(diào)區(qū)間;
(2)設(shè)f(x)在點(diǎn)(x1,f(x1))與g(x)在點(diǎn)(x2,f(x2))處切線相同,則,分別求得導(dǎo)數(shù)和切線的斜率,構(gòu)造新函數(shù)
,求出導(dǎo)數(shù)和單調(diào)區(qū)間,最值,運(yùn)用單調(diào)性計(jì)算可得a的范圍.
(1)函數(shù)的定義域?yàn)?/span>
,
,
所以
所以當(dāng)即
時(shí),
,
在
上單調(diào)遞增;
當(dāng)即
時(shí),
當(dāng)時(shí)
,
在
上單調(diào)遞增;
當(dāng)時(shí),令
得
| | | |
| + | - | + |
| 增 | 減 | 增 |
綜上:當(dāng)時(shí),
在
上單調(diào)遞增;當(dāng)
時(shí)
在
,
單調(diào)遞增,在
單調(diào)遞減.
(2)設(shè)函數(shù)在點(diǎn)
與函數(shù)
在點(diǎn)
處切線相同,
,則
,
由,得
,再由
得,把
代入上式得
設(shè)(∵x2>0,∴x∈(0,+∞)),
則 不妨設(shè)
.
當(dāng)時(shí),
,當(dāng)
時(shí),
所以在區(qū)間
上單調(diào)遞減,在區(qū)間
上單調(diào)遞增,
把代入可得:
設(shè),則
對(duì)
恒成立,
所以在區(qū)間
上單調(diào)遞增,又
所以當(dāng)時(shí)
,即當(dāng)
時(shí)
,
又當(dāng)時(shí),
因此當(dāng)時(shí),函數(shù)
必有零點(diǎn);即當(dāng)
時(shí),必存在
使得
成立;
即存在使得函數(shù)
在點(diǎn)
與函數(shù)
在點(diǎn)
處切線相同.
又由單調(diào)遞增得,因此
所以實(shí)數(shù)的取值范圍是
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:(
)的離心率為
,F是E的右焦點(diǎn),過點(diǎn)F的直線交E于點(diǎn)
和點(diǎn)
(
).當(dāng)直線
與x軸垂直時(shí),
.
(1)求橢圓E的方程;
(2)設(shè)直線l:交x軸于點(diǎn)G,過點(diǎn)B作x軸的平行線交直線l于點(diǎn)C.求證:直線
過線段
的中點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠,
兩條相互獨(dú)立的生產(chǎn)線生產(chǎn)同款產(chǎn)品,在產(chǎn)量一樣的情況下,通過日常監(jiān)控得知,
,
生產(chǎn)線生產(chǎn)的產(chǎn)品為合格品的概率分別為
和
.
(1)從,
生產(chǎn)線上各抽檢一件產(chǎn)品,若使得產(chǎn)品至少有一件合格的概率不低于99.5%,求
的最小值
;
(2)假設(shè)不合格的產(chǎn)品均可進(jìn)行返工修復(fù)為合格品,以(1)中確定的作為
的值.
①已知,
生產(chǎn)線的不合格品返工后每件產(chǎn)品可分別挽回?fù)p失5元和3元,若從兩條生產(chǎn)線上各隨機(jī)抽檢1000件產(chǎn)品,以挽回?fù)p失的平均數(shù)為判斷依據(jù),估計(jì)哪條生產(chǎn)線的挽回?fù)p失較多?
②若最終的合格品(包括返工修復(fù)后的合格品)按照一、二、三等級(jí)分類后,每件可分別獲利10元、8元、6元,現(xiàn)從,
生產(chǎn)線的最終合格品中各隨機(jī)抽取100件進(jìn)行分級(jí)檢測,結(jié)果統(tǒng)計(jì)如圖所示,用樣本的頻率分布估計(jì)總體分布,記該工廠生產(chǎn)一件產(chǎn)品的利潤為
,求
的分布列并估計(jì)該廠產(chǎn)量2000件時(shí)利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“珠算之父”程大位是我國明代著名的數(shù)學(xué)家,他的應(yīng)用巨著《算法統(tǒng)綜》中有一首“竹筒容米”問題:“家有九節(jié)竹一莖,為因盛米不均平,下頭三節(jié)四升五,上梢四節(jié)三升八,唯有中間兩節(jié)竹,要將米數(shù)次第盛,若有先生能算法,也教算得到天明.”((注)四升五:4.5升,次第盛:盛米容積依次相差同一數(shù)量.)用你所學(xué)的數(shù)學(xué)知識(shí)求得中間兩節(jié)竹的容積為
A. 2.2升B. 2.3升
C. 2.4升D. 2.5升
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知線段是過拋物線
的焦點(diǎn)F的一條弦,過點(diǎn)A(A在第一象限內(nèi))作直線
垂直于拋物線的準(zhǔn)線,垂足為C,直線
與拋物線相切于點(diǎn)A,交x軸于點(diǎn)T,給出下列命題:
(1);
(2);
(3).
其中正確的命題個(gè)數(shù)為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=4cos θ,直線l與圓C交于A,B兩點(diǎn).
(1)求圓C的直角坐標(biāo)方程及弦AB的長;
(2)動(dòng)點(diǎn)P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近五年來某草場羊只數(shù)量與草場植被指數(shù)兩變量間的關(guān)系如表所示,繪制相應(yīng)的散點(diǎn)圖,如圖所示:
年份 | 1 | 2 | 3 | 4 | 5 |
羊只數(shù)量(萬只) | 1.4 | 0.9 | 0.75 | 0.6 | 0.3 |
草地植被指數(shù) | 1.1 | 4.3 | 15.6 | 31.3 | 49.7 |
根據(jù)表及圖得到以下判斷:①羊只數(shù)量與草場植被指數(shù)成減函數(shù)關(guān)系;②若利用這五組數(shù)據(jù)得到的兩變量間的相關(guān)系數(shù)為,去掉第一年數(shù)據(jù)后得到的相關(guān)系數(shù)為
,則
;③可以利用回歸直線方程,準(zhǔn)確地得到當(dāng)羊只數(shù)量為2萬只時(shí)的草場植被指數(shù);以上判斷中正確的個(gè)數(shù)是( )
A.0B.1C.2D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com