日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知函數(shù),其中e為自然對數(shù)的底數(shù).

          1)若函數(shù)的圖象在點處的切線方程為,求實數(shù)a的值;

          2)若函數(shù)2個不同的零點,

          ①求實數(shù)a的取值范圍;

          ②求證:

          【答案】10;(2)①;②詳見解析.

          【解析】

          1)根據(jù)切線方程可知,即可求解;

          2)①求函數(shù)導(dǎo)數(shù),分類討論,顯然時,恒成立,不符合題意,時,由導(dǎo)數(shù)可求函數(shù)最小值,函數(shù)有零點則最小值需小于0,得,易知上有1個零點,利用導(dǎo)數(shù)證明函數(shù)在上有1個零點即可求的取值范圍;

          ②利用導(dǎo)數(shù)構(gòu)造函數(shù)先證明當(dāng),時,,結(jié)合①可得,取對數(shù)即可得出結(jié)論.

          1)因為

          所以切線的斜率為,解得,

          所以實數(shù)的值為0

          2)①由題意知函數(shù)的定義域為

          當(dāng)時,恒成立,

          所以上為增函數(shù),

          至多有1個零點,不合題意.

          當(dāng)時,令,則

          ,則,

          所以上為增函數(shù);

          ,則,

          所以上為減函數(shù).

          的最小值為

          依題意知,解得

          一方面,,所以上有1個零點.

          另一方面,先證明

          ,則

          當(dāng)時,,故上為增函數(shù);

          當(dāng)時,.故上為減函數(shù).

          所以的最大值為,故

          因為,所以

          ,,則

          當(dāng)時,.故上為增函數(shù),

          所以

          因此上有1個零點,

          綜上,實數(shù)的取值范圍是

          ②先證明當(dāng),,時,

          .(*

          不妨設(shè),

          *)式等價

          等價于

          中,令,即證

          ,

          所以上為增函數(shù),故

          所以成立,

          所以成立.

          中,令,即證

          ,則

          所以上為減函數(shù),故,

          所以成立,

          所以成立.

          綜上,(*)式成立.

          由①得2個零點,

          ,所以

          兩邊取“”得,

          所以

          利用得:,

          所以

          又因為

          所以,

          因此

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          1)若,當(dāng)時,證明:

          2)若當(dāng)時,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)的最大值為.

          (1)若關(guān)于的方程的兩個實數(shù)根為,求證:;

          (2)當(dāng)時,證明函數(shù)在函數(shù)的最小零點處取得極小值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】某同學(xué)在微信上查詢到近十年全國高考報名人數(shù)、錄取人數(shù)和山東夏季高考報名人數(shù)的折線圖,其中年的錄取人數(shù)被遮擋了.他又查詢到近十年全國高考錄取率的散點圖,結(jié)合圖表中的信息判定下列說法正確的是(

          A.全國高考報名人數(shù)逐年增加

          B.年全國高考錄取率最高

          C.年高考錄取人數(shù)約

          D.年山東高考報名人數(shù)在全國的占比最小

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知數(shù)列的首項,前項和為,且滿足

          1)若數(shù)列為遞增數(shù)列,求實數(shù)的取值范圍;

          2)若,數(shù)列滿足,,求數(shù)列的通項公式.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù)

          1)求函數(shù)的單調(diào)區(qū)間;

          2)若函數(shù)是自然對數(shù)的底數(shù))恰有一個零點,求實數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】斜率為的直線過拋物線的焦點,且與拋物線交于、兩點.

          1)設(shè)點在第一象限,過作拋物線的準(zhǔn)線的垂線,為垂足,且,直線與直線關(guān)于直線對稱,求直線的方程;

          2)過且與垂直的直線與圓交于、兩點,若面積之和為,求的值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的右焦點為F,直線lC交于M,N兩點.

          1)若l過點F,點MN到直線y2的距離分別為d1,d2,且,求l的方程;

          2)若點M的坐標(biāo)為(0,1),直線m過點MC于另一點N′,當(dāng)直線lm的斜率之和為2時,證明:直線NN′過定點.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù).

          1)求函數(shù)的單調(diào)區(qū)間;

          2)當(dāng)時,如果方程有兩個不等實根,求實數(shù)t的取值范圍,并證明.

          查看答案和解析>>

          同步練習(xí)冊答案