日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】對(duì)于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對(duì)任意,都有,且對(duì)任意∈D,當(dāng)時(shí),恒成立,則稱(chēng)函數(shù)為區(qū)間D上的平底型函數(shù).

          )判斷函數(shù)是否為R上的平底型函數(shù)? 并說(shuō)明理由;

          )設(shè)是()中的平底型函數(shù),k為非零常數(shù),若不等式對(duì)一切R恒成立,求實(shí)數(shù)的取值范圍;

          )若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

          .

          【答案】1不是平底型函數(shù)(2)實(shí)數(shù)的范圍是m1,n1

          【解析】

          【解】(1)對(duì)于函數(shù),當(dāng)時(shí),.

          當(dāng)時(shí),恒成立,故平底型函數(shù)

          ……………………………………………………………2

          對(duì)于函數(shù),當(dāng)時(shí),

          當(dāng)時(shí),.

          所以不存在閉區(qū)間,使當(dāng)時(shí),恒成立.

          不是平底型函數(shù). ……………………………………4

          )若對(duì)一切R恒成立,則.

          因?yàn)?/span>,所以.,則. ……6

          因?yàn)?/span>,則,解得.

          故實(shí)數(shù)的范圍是. …………………………………………………8

          )因?yàn)楹瘮?shù)是區(qū)間上的平底型函數(shù),則

          存在區(qū)間和常數(shù),使得恒成立.

          所以恒成立,即.解得. ……10

          當(dāng)時(shí),.

          當(dāng)時(shí),,當(dāng)時(shí),恒成立.

          此時(shí),是區(qū)間上的平底型函數(shù). ………………12

          當(dāng)時(shí),.

          當(dāng)時(shí),,當(dāng)時(shí),.

          此時(shí),不是區(qū)間上的平底型函數(shù). ………………13

          綜上分析,m1,n1為所求. ………………………………………14

          練習(xí)冊(cè)系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知函數(shù).

          1)當(dāng)時(shí),判斷函數(shù)的單調(diào)性;

          2)若函數(shù)處取得極小值,求實(shí)數(shù)a的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】某池塘中原有一塊浮草,浮草蔓延后的面積(平方米)與時(shí)間(月)之間的函數(shù)關(guān)系式是,它的圖象如圖所示,給出以下命題:①池塘中原有浮草的面積是平方米;②第個(gè)月浮草的面積超過(guò)平方米;③浮草每月增加的面積都相等;④若浮草面積達(dá)到平方米,平方米,平方米所經(jīng)過(guò)的時(shí)間分別為,則.其中正確命題的序號(hào)有_____.(注:請(qǐng)寫(xiě)出所有正確結(jié)論的序號(hào))

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知圓Cx2+y24x6y+120,點(diǎn)A3,5.

          1)將圓C的方程化為標(biāo)準(zhǔn)方程,并寫(xiě)出圓C的圓心坐標(biāo)及半徑r;

          2)求過(guò)點(diǎn)A的圓的切線(xiàn)方程.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】已知拋物線(xiàn)上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線(xiàn)經(jīng)過(guò)焦點(diǎn),且與拋物線(xiàn)交于兩點(diǎn).

          1)求拋物線(xiàn)的標(biāo)準(zhǔn)方程及準(zhǔn)線(xiàn)方程;

          2)若為銳角,作線(xiàn)段的中垂線(xiàn)軸于點(diǎn).證明:為定值,并求出該定值.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】(2018·湖南師大附中摸底)已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(-4,-3),且被圓(x+1)2+(y+2)2=25截得的弦長(zhǎng)為8,則直線(xiàn)l的方程是________

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】2018年9月24日,阿貝爾獎(jiǎng)和菲爾茲獎(jiǎng)雙料得主、英國(guó)著名數(shù)學(xué)家阿蒂亞爵士宣布自己證明了黎曼猜想,這一事件引起了數(shù)學(xué)屆的震動(dòng)。在1859年的時(shí)候,德國(guó)數(shù)學(xué)家黎曼向科學(xué)院提交了題目為《論小于某值的素?cái)?shù)個(gè)數(shù)》的論文并提出了一個(gè)命題,也就是著名的黎曼猜想。在此之前,著名數(shù)學(xué)家歐拉也曾研究過(guò)這個(gè)問(wèn)題,并得到小于數(shù)字的素?cái)?shù)個(gè)數(shù)大約可以表示為的結(jié)論。若根據(jù)歐拉得出的結(jié)論,估計(jì)1000以?xún)?nèi)的素?cái)?shù)的個(gè)數(shù)為_(kāi)________(素?cái)?shù)即質(zhì)數(shù),,計(jì)算結(jié)果取整數(shù))

          A. 768 B. 144 C. 767 D. 145

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】如圖,在三棱錐中,,,為線(xiàn)段的中點(diǎn),是線(xiàn)段上一動(dòng)點(diǎn)

          (1)當(dāng)時(shí),求證:;

          (2)當(dāng)的面積最小時(shí),求三棱錐的體積

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來(lái)源: 題型:

          【題目】按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通7座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動(dòng)機(jī)制,保費(fèi)與上一、二、三個(gè)年度車(chē)輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

          交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

          投保類(lèi)型

          浮動(dòng)因素

          浮動(dòng)比率

          上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮10%

          上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

          下浮20%

          上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

          下浮30%

          上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

          0%

          上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任不涉及死亡的道路交通事故

          上浮10%

          上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

          上浮30%

          某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車(chē)的投保情況,隨機(jī)抽取了80輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

          類(lèi)型

          數(shù)量

          20

          10

          10

          20

          15

          5

          以這80輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:

          (1)某家庭有一輛該品牌車(chē)且車(chē)齡剛滿(mǎn)三年,記為該車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;

          (2)某銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車(chē)輛記為事故車(chē).

          若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求這三輛車(chē)中至少有2輛事故車(chē)的概率;

          ②假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損4000元,一輛非事故盈利8000元,若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求其獲得利潤(rùn)的期望值.

          查看答案和解析>>

          同步練習(xí)冊(cè)答案