日韩亚洲一区中文字幕,日韩欧美三级中文字幕在线,国产伦精品一区二区三区,免费在线欧美性爱链接

      1. <sub id="o5kww"></sub>
        <legend id="o5kww"></legend>
        <style id="o5kww"><abbr id="o5kww"></abbr></style>

        <strong id="o5kww"><u id="o5kww"></u></strong>
        1. 【題目】已知拋物線上一點(diǎn)到焦點(diǎn)的距離,傾斜角為的直線經(jīng)過焦點(diǎn),且與拋物線交于兩點(diǎn).

          1)求拋物線的標(biāo)準(zhǔn)方程及準(zhǔn)線方程;

          2)若為銳角,作線段的中垂線軸于點(diǎn).證明:為定值,并求出該定值.

          【答案】1)拋物線的方程為,準(zhǔn)線方程為

          2為定值,證明見解析.

          【解析】

          1)利用拋物線的定義結(jié)合條件,可得出,于是可得出點(diǎn)的坐標(biāo),然后將點(diǎn)的坐標(biāo)代入拋物線的方程求出的值,于此可得出拋物線的方程及其準(zhǔn)線方程;

          2)設(shè)直線的方程為,設(shè)點(diǎn)、,將直線的方程與拋物線的方程聯(lián)立,消去,列出韋達(dá)定理,計(jì)算出線段的中點(diǎn)的坐標(biāo),由此得出直線的方程,并得出點(diǎn)的坐標(biāo),計(jì)算出的表達(dá)式,可得出,然后利用二倍角公式可計(jì)算出為定值,進(jìn)而證明題中結(jié)論成立.

          1)由拋物線的定義知,,.

          將點(diǎn)代入,得,得.

          拋物線的方程為,準(zhǔn)線方程為

          2)設(shè)點(diǎn)、,設(shè)直線的方程為

          ,消去得:,則,

          ,.

          設(shè)直線中垂線的方程為:,

          ,得:,則點(diǎn),.

          為定值.

          練習(xí)冊系列答案
          相關(guān)習(xí)題

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知拋物線的焦點(diǎn)為,過的直線交軸正半軸于點(diǎn),交拋物線于兩點(diǎn),其中點(diǎn)在第一象限.

          )求證:以線段為直徑的圓與軸相切;

          )若,,,求的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知橢圓的離心率,連接橢圓的四個頂點(diǎn)得到的菱形的面積為4。

          1. 求橢圓的方程;
          2. 設(shè)直線與橢圓相交于不同的兩點(diǎn),已知點(diǎn)的坐標(biāo)為(),點(diǎn)在線段的垂直平分線上,且,求的值

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】下列說法中正確的個數(shù)是( )

          ①命題:“、,若,則”,用反證法證明時應(yīng)假設(shè);

          ②若,則中至少有一個大于;

          ③若、、成等比數(shù)列,則

          ④命題:“,使得”的否定形式是:“,總有.

          A.B.C.D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】如圖,矩形所在的平面與直角梯形所在的平面成的二面角,,,,.

          1)求證:;

          2)在線段上求一點(diǎn),使銳二面角的余弦值為.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間和常數(shù),使得對任意,都有,且對任意∈D,當(dāng)時,恒成立,則稱函數(shù)為區(qū)間D上的平底型函數(shù).

          )判斷函數(shù)是否為R上的平底型函數(shù)? 并說明理由;

          )設(shè)是()中的平底型函數(shù),k為非零常數(shù),若不等式對一切R恒成立,求實(shí)數(shù)的取值范圍;

          )若函數(shù)是區(qū)間上的平底型函數(shù),求的值.

          .

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知定義在的奇函數(shù)滿足:①;②對任意均有;③對任意,均有.

          1)求的值;

          2)利用定義法證明上單調(diào)遞減;

          3)若對任意,恒有,求實(shí)數(shù)的取值范圍.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知則關(guān)于的方程,給出下列五個命題①存在實(shí)數(shù),使得該方程沒有實(shí)根;

          ②存在實(shí)數(shù),使得該方程恰有個實(shí)根;

          ③存在實(shí)數(shù)使得該方程恰有個不同實(shí)根;

          ④存在實(shí)數(shù),使得該方程恰有個不同實(shí)根;

          ⑤存在實(shí)數(shù),使得該方程恰有個不同實(shí)根

          其中正確的命題的個數(shù)是(  )

          A. B. C. D.

          查看答案和解析>>

          科目:高中數(shù)學(xué) 來源: 題型:

          【題目】已知函數(shù),.

          (1)若,求的最大值;

          (2)當(dāng)時,求證:.

          查看答案和解析>>

          同步練習(xí)冊答案