【題目】如圖,在三棱錐中,
,
,
,
,
為線段
的中點(diǎn),
是線段
上一動點(diǎn).
(1)當(dāng)時,求證:
面
;
(2)當(dāng)的面積最小時,求三棱錐
的體積.
【答案】(1)見解析;(2).
【解析】
分析:(1)先利用勾股定理得到線線垂直,利用“同一平面內(nèi)與一條直線垂直的直線平行”得到線線平行,再利用線面平行的判定定理進(jìn)行證明;(2)先利用等腰三角形的“三線合一”得到線線垂直,利用線面垂直的判定定理和性質(zhì)定理得到面面垂直和線線垂直,進(jìn)而確定為直角三角形,確定何時取得最小值,再利用三棱錐的體積公式進(jìn)行求解.
詳解:(1)直角中,
,
在中,由
知
,
∴,又
面
,∴
面
.
(2)等腰直角中,由
為
中點(diǎn)知,
,
又由,
,
知
面
,
由面
,∴
,
又,
知
面
,
由面
,∴
,
即為直角三角形,
∴最小時,
的面積最小,
過點(diǎn)作
的垂線時,當(dāng)
為垂足時,
最小為
,
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】十九大提出,堅決打贏脫貧攻堅戰(zhàn),某幫扶單位為幫助定點(diǎn)扶貧村真脫貧,堅持扶貧同扶智相結(jié)合,幫助貧困村種植蜜柚,并利用電商進(jìn)行銷售,為了更好地銷售,現(xiàn)從該村的蜜柚樹上隨機(jī)摘下了100個蜜柚進(jìn)行測重,其質(zhì)量分別在,
,
,
,
,
(單位:克)中,其頻率分布直方圖如圖所示.
(1)按分層抽樣的方法從質(zhì)量落在,
的蜜柚中抽取5個,再從這5個蜜柚中隨機(jī)抽取2個,求這2個蜜柚質(zhì)量均小于2000克的概率;
(2)以各組數(shù)據(jù)的中間數(shù)代表這組數(shù)據(jù)的平均水平,以頻率代表概率,已知該貧困村的蜜柚樹上大約還有5000個蜜柚等待出售,某電商提出兩種收購方案:
A.所有蜜柚均以40元/千克收購;
B.低于2250克的蜜柚以60元/個收購,高于或等于2250克的以80元/個收購.
請你通過計算為該村選擇收益最好的方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于定義在區(qū)間D上的函數(shù),若存在閉區(qū)間
和常數(shù)
,使得對任意
,都有
,且對任意
∈D,當(dāng)
時,
恒成立,則稱函數(shù)
為區(qū)間D上的“平底型”函數(shù).
(Ⅰ)判斷函數(shù)和
是否為R上的“平底型”函數(shù)? 并說明理由;
(Ⅱ)設(shè)是(Ⅰ)中的“平底型”函數(shù),k為非零常數(shù),若不等式
對一切
R恒成立,求實(shí)數(shù)
的取值范圍;
(Ⅲ)若函數(shù)是區(qū)間
上的“平底型”函數(shù),求
和
的值.
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,正方體ABCD-A1B1C1D1中,E、F分別是AB和AA1的中點(diǎn).
求證:(1)E、C、D1、F四點(diǎn)共面;
(2)CE、D1F、DA三線共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知 ,則關(guān)于
的方程
,給出下列五個命題:①存在實(shí)數(shù)
,使得該方程沒有實(shí)根;
②存在實(shí)數(shù),使得該方程恰有
個實(shí)根;
③存在實(shí)數(shù),使得該方程恰有
個不同實(shí)根;
④存在實(shí)數(shù),使得該方程恰有
個不同實(shí)根;
⑤存在實(shí)數(shù),使得該方程恰有
個不同實(shí)根.
其中正確的命題的個數(shù)是( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表
商店名稱 | A | B | C | D | E |
銷售額x(千萬元) | 3 | 5 | 6 | 7 | 9 |
利潤額y(百萬元) | 2 | 3 | 3 | 4 | 5 |
(1)畫出散點(diǎn)圖.觀察散點(diǎn)圖,說明兩個變量有怎樣的相關(guān)性.
(2)用最小二乘法計算利潤額y對銷售額x的回歸直線方程.
(3)當(dāng)銷售額為4(千萬元)時,估計利潤額的大小.
其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在人群流量較大的街道,有一中年人吆喝“送錢”,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:
摸球方法:從袋中隨機(jī)摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.
(1)摸出的3個球為白球的概率是多少?
(2)摸出的3個球為2個黃球1個白球的概率是多少?
(3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的函數(shù)
是奇函數(shù).
(1)求實(shí)數(shù)的值;
(2)判斷的單調(diào)性并用定義證明;
(3)已知不等式恒成立, 求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知復(fù)數(shù)z=bi(b∈R),是純虛數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)若復(fù)數(shù)(m+z)2所表示的點(diǎn)在第二象限,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com